A wearable surface-enhanced Raman scattering (SERS) sensor has been developed as a patch type to utilize as a molecular sweat sensor. Here, the SERS patch sensor is designed to comprise a sweat-absorbing layer, which is an interface to the human skin, an SERS active layer, and a dermal protecting layer that prevents damage and contaminations. A silk fibroin protein film (SFF) is a basement layer that absorbs aqueous solutions and filtrates molecules larger than the nanopores created in the β-sheet matrix of the SFF. On the SFF layer, a plasmonic silver nanowire (AgNW) layer is formed to enhance the Raman signal of the molecules that penetrated through the SERS patch in a label-free method. A transparent dermal protecting layer (DP) allows laser penetration to the AgNW layer enabling Raman measurement through the SERS patch without its detachment from the surface. The molecular detection capability and time-dependent absorption properties of the SERS patch are investigated, and then, the feasibility of its use as a wearable drug detection sweat sensor is demonstrated using 2-fluoro-methamphetamine (2-FMA) on the human cadaver skin. It is believed that the developed SERS patch can be utilized as various flexible and wearable biosensors for healthcare monitoring.
This minireview reports the recent advances in surface-enhanced Raman scattering (SERS)-based assay devices for the diagnosis of infectious diseases. SERS-based detection methods have shown promise in overcoming the low sensitivity...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.