The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.
This paper presents the design, development, and pre-launch characterization of the ESTCube-1 Attitude Determination and Control System (ADCS). The design driver for the ADCS has been the mission requirement to spin up the satellite to 360 deg·s −1 with controlled orientation of the spin axis and to acquire the angular velocity and the attitude during the scientific experiment. ESTCube-1 is a one-unit CubeSat launched on 7 May 2013, 2:06 UTC on board the Vega VV02 rocket. Its primary mission is to measure the Coulomb drag force exerted by a natural plasma stream on a charged tether and, therefore, to perform the basic proof of concept measurement and technology demonstration of electric solar wind sail technology. The attitude determination system uses three-axis magnetometers, three-axis gyroscopic sensors, and two-axis Sun sensors, a Sun sensor on each side of the satellite. While commercial off-the-shelf components are used for magnetometers and gyroscopic sensors, Sun sensors are custombuilt based on analogue one-dimensional position sensitive detectors. The attitude of the satellite is estimated on board using an Unscented Kalman Filter. An ARM 32-bit processor is used for ADCS calculations. Three electromagnetic coils are used for attitude control. The system is characterized through tests and simulations. Results include mass and power budgets, estimated uncertainties as well as attitude determination and control performance. The system fulfils all mission requirements.
We analyse the potential of the electric solar wind sail for solar system space missions. The applications studied include flyby missions to terrestrial planets (Venus, Mars and Phobos, Mercury) and asteroids, missions based on non-Keplerian orbits (orbits that can be maintained only by applying continuous propulsive force), one-way boosting to the outer solar system, off-Lagrange point space weather forecasting, and low-cost impactor probes for added science value to other missions. We also discuss the generic idea of data clippers (returning large volumes of high-resolution scientific data from distant targets packed in memory chips) and possible exploitation of asteroid resources. Possible orbits were estimated by orbit calculations assuming circular and coplanar orbits for planets. Some particular challenge areas requiring further research work and related to some more ambitious mission scenarios are also identified and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.