Mag. inf., student, Odjel za informatiku, Sveučilište u Rijeci, Radmile Matejčić 2, Dr. sc., izv. prof., Odjel za informatiku, Sveučilište u Rijeci, Radmile Matejčić 2,SAŽETAK Cilj je ovog rada izgraditi model vrednovanja šahovskih pozicija koji se temelji na informacijama dobivenima iz mrežnih značajki pozicija šahovskih figura na ploči. Međusobni odnosi figura, kao i odnosi figura i polja koja zauzimaju, a koji opisuju određene taktičke i strateške elemente šahovske partije, mogu se modelirati kompleksnom mrežom. Ovim je radom pokazano kako upotrebom samo određenih mjera koje opisuju strukturu kompleksne mreže možemo naučiti klasifikator pozicija koji može predvidjeti krajnji ishod partije bolje od klasične Shannonove evaluacijske funkcije. Shannonova evaluacijska funkcija kvantificira materijalno stanje na ploči obiju strana u šahovskoj igri, mobilnost figura, sigurnost kralja te kvalitetu pješačke strukture. Računalni model koji klasificira na ulazu ima vektore značajki određene iz četiri vrste mreža (mreža podrške, mreža mobilnosti, pozicijska mreža, mreža praćenja) konstruiranih iz baze majstorskih partija, od kojih svaka modelira određeni aspekt šahovske igre. Vektor značajki sadrži značajke dobivene izračunom različitih mjera strukture mreže. Za određivanje značajki prema važnosti, kao i klasifikacijski postupak ishoda igre, upotrebljava se šuma slučajnih stabla. Nadalje, eksperimentalno se određuju osnovne evaluacije statičkih pozicija u šahovskim partijama pomoću Stockfish šahovskog programa. Nakon toga, značajke te pripadne evaluacijske ciljne klase (pobjeda bijelog, pobjeda crnog igrača ili remi) udružuju se u ulazne vektore za učenje modela klasifikacije pozicija, čiji se rezultati uspoređuju sa Shannonovom evaluacijskom funkcijom. Pokazano je kako predložena metoda vrednovanja temeljena na informacijama o strukturi mreže daje bolje rezultate (75 % točnosti) od klasične Shannonove evaluacijske funkcije (52 % točnosti) za testnu bazu partija. Ključne riječi: evaluacijska funkcija u šahu, kompleksne mreže, mrežne značajke, šuma slučajnih stabala, predviđanje ishoda šahovske igre Creative Commons Attribution -NonCommercial 4.0 International License J. Jokić, S. Martinčić-Ipšić: Primjena šume slučajnih stabala za predviđanje ishoda… ABSTRACT This work addresses the problem of constructing a static chess position evaluation model which utilizes only information extracted from complex networks' features of positions of chess pieces on the board. The mutual relations of chess figures, the complex relations of figures and the positions on the chess board, as well as the information on which fields they are attacked, describing tactical and strategic elements of the chess game, all these are modeled by a complex network formalism. The goal of this work is to demonstrate that it is possible to train a classifier which would have better prediction results of the game outcome, utilizing only selected measurements of the complex network' s features rather than the corresponding Shannon' s evaluation function. Sha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.