This paper presents the standardized precipitation evapotranspiration index (SPEI)-based approach to agricultural drought monitoring (ADM-SPEI approach) combining well-known methods, expert’ critical opinions, and local agro-climatic specificities. The proposed approach has been described in detail in three phases. This allows its application in any region and modification according to different agro-climatic conditions. The application of the ADM-SPEI approach has resulted in obtaining a modified SPEI for different crops (agricultural drought SPEI (AD-SPEIcrop)) in the Vojvodina region. In the first phase of the proposed approach, analytical hierarchy process (AHP) was used to obtain an experts’ group decision regarding the most suitable method for calculating evapotranspiration for a particular analyzed region. In the second phase, SPEI was modified and adjusted to the conditions in Vojvodina, where ET0 was replaced by ETc. In the validation phase, the results of the application of AD-SPEIcrop were compared to crop yields and well-known indices and evaluated by the experts’ feedback. The statistically significant correlations were achieved between AD-SPEIcrop and crop yields. The highest correlations were achieved in the months when the analyzed crops were in the developmental stages when they are most sensitive to drought. The AD-SPEIcrop better correlates to the crop yields compared to SPEI. The comparison of AD-SPEIcrop to the standardized precipitation index (SPI), SPEI, and self-calibrated Palmer drought severity index (SC-PDSI) shows that it can successfully detect dry and wet periods. The results have indicated that the proposed approach can be successfully applied, and AD-SPEIcrop has shown a good performance for agricultural drought monitoring.
This paper presents a methodology for defining spatial priorities for irrigation development in Vojvodina Province (Serbia). The purpose of the methodology is to take into account several UN Sustainable Development Goals and to try to minimize land degradation, while maximizing water use efficiency. In the first step, areas that can be irrigated over long-term periods with minimal risk of soil degradation were selected in the geographic information system (GIS) environment. Then, three experts used the analytic hierarchy process (AHP) to define the weights of four criteria related to water use efficiency. After that, the consensus model was used to obtain group weights of the criteria. These criteria were standardized and presented as GIS layers. Finally, cell values in all the layers were multiplied by corresponding consensus weights of the criteria. The weighted layers are summarized in the final map representing spatial priorities for irrigation development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.