Osteocytes within the mineralized bone matrix control bone remodeling by regulating osteoblast and osteoclast activity. Osteocytes express the aging suppressor Klotho, but the functional role of this protein in skeletal homeostasis is unknown. Here we identify Klotho expression in osteocytes as a potent regulator of bone formation and bone mass. Targeted deletion of Klotho from osteocytes led to a striking increase in bone formation and bone volume coupled with enhanced osteoblast activity, in sharp contrast to what is observed in Klotho hypomorphic (kl/kl) mice. Conversely, overexpression of Klotho in cultured osteoblastic cells inhibited mineralization and osteogenic activity during osteocyte differentiation. Further, the induction of chronic kidney disease with high-turnover renal osteodystrophy led to downregulation of Klotho in bone cells. This appeared to offset the skeletal impact of osteocyte-targeted Klotho deletion. Thus, our findings establish a key role of osteocyte-expressed Klotho in regulating bone metabolism and indicate a new mechanism by which osteocytes control bone formation.
Neonatal exposure to genistein (GEN), an isoflavone abundant in soy, favorably modulates bone mineral density (BMD) and bone strength in mice at adulthood. The study objective was to determine whether early exposure to a combination of the soy isoflavones daidzein (DAI) and GEN that naturally exists in soy protein-based infant formula results in greater benefits to bone at adulthood than either treatment alone. Male and female CD-1 mice (n = 8-16 pups per group per gender) were randomized to subcutaneous injections of DAI (2 mg x kg body weight(-1) x d(-1)), GEN (5 mg x kg body weight(-1) x d(-1)), DAI+GEN (7 mg x kg body weight(-1) x d(-1)), diethylstilbesterol (DES; positive control) (2 mg x kg body weight(-1) x d(-1)), or control (CON) from postnatal d 1-5 and were studied to 4 mo of age. BMD, biomechanical bone strength, and bone microarchitecture were assessed at the femur and lumbar vertebrae (LV). Females treated with DAI, GEN, DAI+GEN, or DES had greater (P < 0.05) BMD at the LV compared with CON and vertebra in the DAI and DES group were more resistant to compression fractures. Microstructural analyses demonstrated that treatment with DAI and GEN resulted in greater (P < 0.05) trabecular connectivity and trabecular thickness, respectively, than the CON. In conclusion, neonatal exposure to DAI and/or GEN had a positive effect on the skeleton of female mice at adulthood, but, compared with individual treatments, DAI+GEN did not have a greater benefit to bone in females or males.
Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type ( ) and knockout ( ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of mice but not their axial skeleton failed to increase expression as observed in uremic mice. Consequently, mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-α-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure.
Vitamin D deficiency is a highly prevalent condition that is present in 40% to 80% of pregnant women. There is emerging evidence that vitamin D deficiency may be a risk modifying factor for many chronic diseases, including osteomalacia, rickets, multiple sclerosis, schizophrenia, heart disease, type 1 diabetes, and cancer. Heightened susceptibility to these diseases may originate in early life during the development of tissue structure and function. It is suspected that biologic mechanisms can "memorize" the metabolic effects of early nutritional environment through fetal and neonatal imprinting. Inadequate vitamin D nutrition during perinatal life may establish a poor foundation that may produce long-term threats to human health. This review summarizes the risks of vitamin D deficiency for human health and provides the current vitamin D recommendations for mothers and their newborns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.