The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
The majority of TP53 missense mutations identified in cancer patients are in the DNA-binding domain and are characterized as either structural or contact mutations. These missense mutations exhibit inhibitory effects on wild-type p53 activity. More importantly, these mutations also demonstrate gain-of-function (GOF) activities characterized by increased metastasis, poor prognosis, and drug resistance. To better understand the activities by which TP53 mutations, identified in Li-Fraumeni syndrome, contribute to tumorigenesis, we generated mice harboring a novel germline Trp53R245W allele (contact mutation) and compared them to existing models with Trp53R172H (structural mutation) and Trp53R270H (contact mutation) alleles. Thymocytes from heterozygous mice showed that all three hotspot mutations exhibited similar inhibitory effects on wild-type Trp53 transcription in vivo, and tumors from these mice had similar levels of loss of heterozygosity. However, the overall survival of Trp53R245W/+ and Trp53R270H/+ mice, but not Trp53R172H/+ mice, was significantly shorter than that of Trp53+/- mice, providing strong evidence for p53 mutant-specific GOF contributions to tumor development. Furthermore, Trp53R245W/+ and Trp53R270H/+ mice had more osteosarcoma metastases than Trp53R172H/+ mice, suggesting that these two contact mutants have stronger GOF in driving osteosarcoma metastasis. Transcriptomic analyses using RNA-sequencing data from Trp53R172H/+, Trp53R245W/+, and Trp53R270H/+ primary osteosarcomas in comparison to Trp53+/- indicated that GOF of the three mutants was mediated by distinct pathways. Thus, both the inhibitory effect of mutant over WT p53 and GOF activities of mutant p53 contributed to tumorigenesis in vivo. Targeting p53 mutant-specific pathways may be important for therapeutic outcomes in osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.