Agrobacterium rhizogenes A4M70GUS-mediated transformation of Savoy cabbage (Brassica oleracea L. var. sabauda) and two local lines of cabbage (B. oleracea L. var. capitata) was obtained using hypocotyl and cotyledon explants. The percentage of explants which formed roots was very high in all genotypes: 92.3 % in Savoy Gg-1, 64.4 % in cabbage P 22 I 5, and 87.2 % in P 34 I 5. Spontaneous shoot regeneration of excised root cultures grown on the hormone-free medium occurred in all three genotypes. In cabbage lines P 22 I 5 and P 34 I 5 shoot regeneration was higher (9.3 and 2.6 % respectively) than in Savoy cabbage Gg-1 (1.3 %). Transgenic nature of hairy root-derived plants was evaluated by GUS histological test and PCR analysis. All the tested cabbage shoots were GUS positive whilst in a Savoy cabbage GUS expression was registered only in 55 % of tested clones. PCR analysis demonstrated the presence of the GUS gene in regenerated shoot clones and in T 1 progeny.
Phytodecta fornicata Brüggemann is a serious pest of alfalfa (Medicago sativa L.) that causes significant crop loss in the Balkan peninsula of Europe. We introduced a wound-inducible oryzacystatin II (OCII) gene to alfalfa to evaluate its effect on survival of P. fornicata larvae. Feeding bioassays with second, third and fourth instars were carried out using transgenic plants that were shown to express OCII at 24 and 48 h after wounding. Second and third instars were the most sensitive to the ingestion of OCII, whereas no effects were observed with fourth instars. About 80% of the second and third instars died after 2 days of feeding on the transgenic plants as compared to 0-40% on the controls. This is the first report that demonstrates significant increase in mortality of P. fornicata on transgenic plants that express a cysteine proteinase inhibitor gene, and this knowledge should lead to the development of effective management strategies for this devastating pest of alfalfa.
Buckwheat (Fagopyrum esculentum Moench) is a heterostylous plant displaying heteromorphic sporophytic selfincompatibility (SI). In order to detect proteins involved in SI, pistils from both long and short styles were isolated and then selfed or cross-pollinated. One-dimensional gel electrophoresis revealed that short pistils 2 h after selfing contained an unique 50 kDa protein. In the two-dimensional electrophoresis two distinct groups of proteins possibly involved in SI response were detected in the short, and one in the long pistils.
Chenopodium murale L. is an invasive weed species significantly interfering with wheat crop. However, the complete nature of its allelopathic influence on crops is not yet fully understood. In the present study, the focus is made on establishing the relation between plant morphophysiological changes and oxidative stress, induced by allelopathic extract. Phytotoxic medium of C. murale hairy root clone R5 reduced the germination rate (24% less than control value) of wheat cv. Nataša seeds, as well as seedling growth, diminishing shoot and root length significantly, decreased total chlorophyll content, and induced abnormal root gravitropism. The R5 treatment caused cellular structural abnormalities, reflecting on the root and leaf cell shape and organization. These abnormalities mostly included the increased number of mitochondria and reorganization of the vacuolar compartment, changes in nucleus shape, and chloroplast organization and distribution. The most significant structural changes were observed in cell wall in the form of amoeboid protrusions and folds leading to its irregular shape. These structural alterations were accompanied by an oxidative stress in tissues of treated wheat seedlings, reflected as increased level of HO and other ROS molecules, an increase of radical scavenging capacity and total phenolic content. Accordingly, the retardation of wheat seedling growth by C. murale allelochemicals may represent a consequence of complex activity involving both cell structure alteration and physiological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.