Mechanical moduli of cultured airway smooth muscle cells (Fabry, B., et al. Phys. Rev. Lett. 87:148102, 2001) reveal that the frequency dependence of cell rheological behavior conforms to a weak power-law relationship over a wide range of frequency (10(-2)-10(3) Hz). Such a behavior cannot be accounted for by standard viscoelastic models characterized by a discrete number of time constants that have been commonly used in previous studies of cell viscoelasticity. Fractional calculus, by contrast, provides a natural framework for describing weak power-law relationships and requires no assumptions about the type of material, the time constant distribution or the time/frequency interval in which rheological observations are made. In this study, we developed a rheological model of the cell using methods of fractional calculus. We used a least-squares technique to fit the model to data previously obtained from measurements on airway smooth muscle cells. The fit provided an excellent correspondence to the data, and the estimated values of model parameters were physically plausible. The model leads to a novel and unexpected empirical link between dynamic viscoelastic behavior of the cytoskeleton and the static contractile stress that it bears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.