We perform comprehensive long-time monitoring of the p-doping and de-doping of poly͑3-hexyl thiophene͒ under changing external conditions of oxygen, light, and temperature. They are shown to be controlled by the complex adsorption and desorption process with time scales ranging from seconds to weeks. The oxygen doping at atmospheric pressure takes several hours in the dark. The doping is dramatically accelerated to be within seconds with light of wavelength of 500-700 nm. Even at low oxygen pressure of 10 −4 torr doping occurs within minutes with light. The de-doping by oxygen desorption takes as long as weeks at room temperature and vacuum of 10 −4 torr, but when the temperature is raised to near the polymer glass temperature of 370 K, the de-doping is accelerated to minutes as the enhanced chain motion releases the trapped oxygen. Even though visible and near infrared light causes very efficient doping within seconds or minutes depending on vacuum level, such light-induced doping is not a chemical reaction and is fully reversible by thermal annealing at the end without sacrificing the mobility. For the polymer field-effect transistors, only the carrier density is changed while the mobility remains roughly a constant for all the conditions.
Ir complex was doped to conjugated polymers, and the photoinduced absorption of triplet excitons in host materials was examined. A greatly enhanced intersystem crossing rate was observed, despite the decrease in triplet exciton lifetime. The authors find that the steady-state triplet exciton population in host polymer would increase by an order of magnitude. Conjugated polymer/colloidal CdSe nanocrystal hybrid solar cells were fabricated and the effect of Ir-complex doping on photovoltaic response was studied. It was found that due to the enhanced singlet-to-triplet conversion, greatly enhanced photovoltaic response of these hybrid organic solar cells was observed. The results suggest that triplet solar cells may be achieved by doping conventional photovoltaic materials with transition-metal complexes.
The absolute frequencies of rubidium 5S-7S two-photon transitions at 760 nm are measured to an accuracy of 20 kHz with an optical frequency comb based on a mode-locked femtosecond Ti:sapphire laser. The rubidium 5S-7S two-photon transitions are potential candidates for frequency standards and serve as important optical frequency standards for telecommunication applications. The accuracy of the hyperfine constant of the 7S1/2 state is improved by a factor of 5 in comparison with previous results.
We study the charge-transfer exciton absorption and photocurrent response in solution-processed bulk heterojunction based on poly(3-hexylthiophene) donor and (6,6)-phenyl-C61-butyric acid methyl ester acceptor in the near-infrared wavelength region. While the exciton absorption exists only for wavelength below 650nm, direct generation of charge-transfer exciton formed between the donor and acceptor extends the absorption wavelength to 950nm. For films with micrometer thickness, the photon-to-electron conversion efficiency is about 60% at 750nm wavelength under reverse voltage bias and the photocurrent to dark current ratio is about 8.6 at 900nm and remains 3.6 even at 1000nm. Photodetector with high sensitivity covering exclusively the 650–1000nm near infrared region can therefore be made without a low bandgap material. The charge-transfer exciton absorption coefficient and photocurrent sensitivity depend on the annealing condition which controls the donor-acceptor morphology.
The triplet to singlet exciton formation ratio in a MEH-PPV light-emitting diode is measured by comparing the triplet-induced absorptions with optical and electric excitations at the same singlet exciton density. The ratio is a strong universal decreasing function of the averaged electric field. Using 4 ns for singlet to triplet intersystem crossing time, the ratio is significantly larger than the spin-independent value 3 at intermediate field but is reduced to about 2 for higher field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.