Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon () and red elderberry (). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) 183:415-429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) 9:167-180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.
Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body‐frame size, as evidenced by asymptotic skull size and body length, was achieved by 8–14 years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2‐fold difference in lean mass and males showing a 3‐ to 4‐fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life‐history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Furthermore, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species’ range.
ABSTRACT:Safe and effective immobilization of grizzly bears (Ursus arctos) is essential for research and management. Fast induction of anesthesia, maintenance of healthy vital rates, and predictable recoveries are priorities. From September 2010 to May 2012, we investigated these attributes in captive and wild grizzly bears anesthetized with a combination of a reversible a 2 agonist (dexmedetomidine [dexM], the dextrorotatory enantiomer of medetomidine) and a nonreversible N-methyl-D-aspartate (NMDA) agonist and tranquilizer (tiletamine and zolazepam [TZ], respectively). A smaller-than-expected dose of the combination (1.23 mg tiletamine, 1.23 mg zolazepam, and 6.04 mg dexmedetomidine per kg bear) produced reliable, fast ataxia (3.760.5 min, x6SE) and workable anesthesia (8.160.6 min) in captive adult grizzly bears. For wild bears darted from a helicopter, a dose of 2.06 mg tiletamine, 2.06 mg zolazepam, and 10.1 mg dexmedetomidine/ kg produced ataxia in 2.560.3 min and anesthesia in 5.561.0 min. Contrary to published accounts of bear anesthesia with medetomidine, tiletamine, and zolazepam, this combination did not cause hypoxemia or hypoventilation, although mild bradycardia (,50 beats per min) occurred in most bears during the active season. With captive bears, effective dose rates during hibernation were approximately half those during the active season. The time to first signs of recovery after the initial injection of dexMTZ was influenced by heart rate (P,0.001) and drug dose (P,0.001). Intravenous (IV) injection of the reversal agent, atipamezole, significantly decreased recovery time (i.e., standing on all four feet and reacting to the surrounding environment) relative to intramuscular injection. Recovery times (2568 min) following IV injections of the recommended dose of atipamezole (10 mg/mg of dexmedetomidine) and half that dose (5 mg/mg) did not differ. However, we recommend use of the full dose based on the appearance of a more complete recovery. Field trials confirmed that the dexMTZ + atipamezole protocol is safe, reliable, and predictable when administered to wild grizzly bears, especially during helicopter capture operations.
There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ(13)C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.