Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant pathogen Pseudomonas syringae pathovar tomato strain DC3000 possess characteristic patterns, including (i) greater than 10% serine within the first 50 amino acids, (ii) an aliphatic residue or proline at position 3 or 4, and (iii) a lack of acidic amino acids within the first 12 residues. Here, the functional significance of the P. syringae T3SS substrate compositional patterns was tested. A mutant AvrPto effector protein lacking all three patterns was secreted into culture and translocated into plant cells, suggesting that the compositional characteristics are not absolutely required for T3SS targeting and that other recognition mechanisms exist. To further analyze the unique properties of T3SS targeting signals, we developed a computational algorithm called TEREE (Type III Effector Relative Entropy Evaluation) that distinguishes DC3000 T3SS substrates from other proteins with a high sensitivity and specificity. Although TEREE did not efficiently identify T3SS substrates in Salmonella enterica, it was effective in another P. syringae strain and Ralstonia solanacearum. Thus, the TEREE algorithm may be a useful tool for identifying new effector genes in plant pathogens. The nature of T3SS targeting signals was additionally investigated by analyzing the N-terminus of FtsX, a putative membrane protein that was classified as a T3SS substrate by TEREE. Although the first 50 amino acids of FtsX were unable to target a reporter protein to the T3SS, an AvrPto protein substituted with the first 12 amino acids of FtsX was translocated into plant cells. These results show that the T3SS targeting signals are highly mutable and that secretion may be directed by multiple features of substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.