In the study, a method of solving ANOVA problems based on an unbalanced three-way mixed effects model with interaction for data when factors A and B are fixed, and factor C is random was presented, and the required EMS was derived. Under each of the appropriate null hypotheses, it was observed that none of the derived EMS was unbiased for the other. Unbiased estimators of the mean squares were determined to test hypotheses. With the unbiased estimators, appropriate F-statistics as well as their corresponding pseudo-degrees of freedom were obtained. The theoretical results presented in the paper were illustrated using a numerical example.
In this paper, a new three-parameter distribution, which is a member of the Alpha Power Transformed Family of distributions, is introduced. The new distribution is a generalization of the logistic model called the alpha power transformed logistic (APTL) distribution. Some mathematical properties of the new distribution like moments, quantile function, median, skewness, kurtosis, Rényi entropy, and order statistics are discussed. The parameters of the distribution are estimated using the maximum likelihood estimation method and a simulation study is performed to investigate the effectiveness of the estimates. The usefulness and flexibility of the APTL distribution in modelling financial data are investigated using two portfolio stock indices, namely the NASDAQ and New York stock indices, both from the United States stock market. Based on the model selection criteria, we are able to establish empirically that the APTL distribution is the best for modelling the two data sets, among the various distributions compared in the study. For each of the data, the quantile value-at-risk estimates for the APTL distribution give the smaller expected portfolio loss at high confidence levels in comparison to those of the other distributions.Keywords: Alpha power transformed family of distributions; logistic distribution; maximum likelihood estimation; portfolio investments; value-at-risk. AbstrakPada artikel ini, diperkenalkan distribusi baru dengan tiga parameter yang merupakan anggota dari keluarga distribusi Alpha Power Transformed. Distribusi baru ini merupakan generalisasi dari model logistik yang disebut distribusi Alpha Power Transform Logistics (APTL). Selain itu, dibahas pula beberapa sifat matematika dari distribusi tersebut yaitu momen, fungsi kuantil, median, kemiringan, kurtosis, entropi Rényi, dan statistik terurut. Parameter distribusi diestimasi menggunakan metode maximum likelihood estimation dan studi simulasi dilakukan untuk menyelidiki keefektifan estimasi. Kegunaan dan fleksibilitas distribusi APTL dalam pemodelan data keuangan diselidiki menggunakan dua indeks saham portofolio dari pasar saham Amerika Serikat yaitu indeks saham NASDAQ dan New York. Berdasarkan kriteria pemilihan model, secara empiris, dihasilkan bahwa APTL adalah distribusi terbaik untuk memodelkan dua set data di antara berbagai distribusi yang dibandingkan pada penelitian ini. Untuk setiap data, estimasi kuantil value-at-risk untuk distribusi APTL memberikan kerugian portofolio yang diharapkan lebih kecil dengan tingkat kepercayaan tinggi dibandingkan dengan distribusi lainnya.Kata Kunci: distribusi dari keluarga Alpha power transformed; distribusi logistik; maximum likelihood estimation; investasi portofolio; value-at-risk. 2020MSC: 62E10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.