Carbenes are highly enabling reactive intermediates that facilitate a diverse range of otherwise inaccessible chemistry, including small-ring formation and insertion into strong σ bonds. To access such valuable reactivity, reagents with high entropic or enthalpic driving forces are often used, including explosive (diazo) or unstable ( gem -dihalo) compounds. Here, we report that common aldehydes are readily converted (via stable α-acyloxy halide intermediates) to electronically diverse (donor or neutral) carbenes to facilitate >10 reaction classes. This strategy enables safe reactivity of nonstabilized carbenes from alkyl, aryl, and formyl aldehydes via zinc carbenoids. Earth-abundant metal salts [iron(II) chloride (FeCl 2 ), cobalt(II) chloride (CoCl 2 ), copper(I) chloride (CuCl)] are effective catalysts for these chemoselective carbene additions to σ and π bonds.
A cross-selective aza-pinacol coupling of aldehydes and imines has been developed to afford valuable β-amino alcohols. This strategy enables chemoselective conversion of aliphatic aldehydes to ketyl radicals, in the presence of more easily reduced imines and other functional groups. Upon carbonyl-specific activation by AcI, a photoinitiated Mn catalyst selectively reduces the resulting α-oxy iodide by an atom transfer mechanism. The ensuing ketyl radical selectively couples to imines, precluding homodimerization by a classical reductive approach. In this first example of reductive, ketyl coupling by atom transfer catalysis, Zn serves as a terminal reductant to facilitate Mn catalyst turnover. This new strategy also enables ketyl radical couplings to alkenes, alkynes, aldehydes, propellanes, and chiral imines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.