The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and postsynaptic neuron. Glutamate is released into the synapse and may occupy and activate receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons and astrocytes. The purpose of the present study was to examine EAAT labeling in postmortem human cortex at the light and electron microscopic levels. Postmortem prefrontal cortex was processed for EAAT1 and EAAT2 immunohistochemistry. At the light microscopic level, EAAT1 and EAAT2 labeling was found in both grey and white matter. Most cellular labeling was in small cells which were morphologically similar to glia. In addition, EAAT1 labeled neurons were scattered throughout, some of which were pyramidal in shape. At the electron microscopic level, EAAT1 and EAAT2 labeling was found in astrocytic soma and processes surrounding capillaries. EAAT labeling was also found in small astocytic processes adjacent to axon terminals forming asymmetric (glutamatergic) synapses. While EAAT2 labeling was most prevalent in astrocytic processes, EAAT1 labeling was also present in neuronal processes including the soma, axons, and dendritic spines. Expression of EAAT1 protein on neurons may be due to the hypoxia associated with the postmortem interval, and requires further confirmation. The localization of EAATs on the astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of hypotheses related to these molecules in diseases lacking analogous animal models.
The typical symptoms of schizophrenia (SZ) are psychotic symptoms (hallucinations, delusions, disorders of thought or speech, grossly disorganized behavior) as well as cognitive impairments and negative symptoms. Not all patients respond to treatment and in those who do, only psychotic symptoms are usually improved. Imaging studies have shown that SZ subjects with high striatal dopamine release are far more responsive to antipsychotic drugs than those patients who have dopamine levels lower than or comparable to that of normal controls. In the present study we hypothesized that there was a link between psychosis and the number of dopaminergic synapses in the caudate nucleus in SZ. We examined dopaminergic synapses at the electron microscopic level in postmortem caudate from cases obtained from the Maryland Brain Collection. SZ were subdivided based on treatment response or resistance. The tissue was processed for the immunocytochemical localization of tyrosine hydroxylase (TH), the synthesizing enzyme for dopamine, and prepared for electron microscopy. The density of all TH labeled synapses was 43% greater in treatment responders than in controls and 62% greater in than in treatment resistant SZ. Axodendritic, but not axospinous, TH-labeled synapses showed this increase. TH-labeled axodendritic synapses in treatment responders were elevated in density (1.95±0.093/10μm3) compared to treatment resistant SZ (0.04±0.017/10μm3) and controls (0.11±0.044/10μm3). The results of the present study suggest that one anatomical underpinning of good treatment response may be a higher density of dopaminergic synapses and support a biological basis to treatment response and resistance. Moreover, these data have important implications for linking specific neuropathology with particular symptoms.
Schizophrenia (SZ) is a mental illness characterized by psychosis, negative symptoms, and cognitive deficits. The anterior cingulate cortex (ACC), a structurally and functionally diverse region, is one of several brain regions that is abnormal in SZ. The present study compared synaptic organization and mitochondrial number and morphology in postmortem ACC in SZ versus normal control (NC). Total synaptic density in the combined ACC was decreased in SZ, to 72% of normal controls (NCs), due to selective decreases in axospinous synapses, both asymmetric (excitatory) and symmetric (inhibitory). These changes were present in layers 3 and 5/6. The density of mitochondria in all axon terminals combined in SZ was decreased to 64% of NC. In layer 3, mitochondrial density was decreased only in terminals forming asymmetric synapses with spines, while in layers 5/6 mitochondrial density was decreased in terminals forming symmetric synapses with spines and dendrites. The proportion of terminals making symmetric synapses that contained mitochondria was significantly lower in SZ than in NCs, especially for symmetric axospinous synapses. The number of mitochondria per neuronal somata was decreased in the ACC in SZ compared to NCs; this finding was present in layers 5-6. The size of mitochondria in neuronal somata and throughout the neuropil was similar in SZ and NCs. Our results, though preliminary, are well supported by the literature, and support an anatomical substrate for some of the altered executive functions found in SZ.
The striatum processes motor, cognitive, and limbic function, all of which are perturbed in schizophrenia. The present study examined the synaptic organization of the caudate and putamen in schizophrenia. Postmortem striatum was obtained from 10 normal controls (NC) and 17 subjects with schizophrenia (SZ), prepared for electron microscopy, and analyzed using stereological principles. The densities of total synapses, asymmetric synapses (characteristic of excitatory inputs), and asymmetric axospinous synapses (characteristic of cortical input) were higher in the caudate of the SZs vs. NCs. These changes were most profound in the off-drug SZ cases and were also elevated in subjects on antipsychotic drugs (APDs). In comparison to NCs, there were no significant differences in the putamen of the SZ cohort as a whole group; however, there were more asymmetric axospinous synapses in the off-drug subgroup. The increase in density of synapses in the SZs does not appear to be caused by antipsychotic medication and may represent failure of normal synaptic pruning or abnormal sprouting. Higher density of cortical-type synapses in SZs vs. NCs may reflect adaptation of corticostriatal circuitry or hyperstimulation of striatal projection neurons. The abnormal synaptic organization could have several important and different downstream effects depending on the precise circuitry involved and may be related to limbic or cognitive dysfunction in schizophrenia.
Reelin is a glycoprotein that plays a critical role in brain development, including proper cortical lamination. In adult animals, reelin continues to be expressed in different neuronal populations in many brain regions. We performed labeling for reelin immunoreactivity (-i) in post-mortem cerebral cortex from five adults and two fetuses with three different antibodies. The tissue was then processed for light and electron microscopy. In cell bodies, reelin-i was found in pyramidal and nonpyramidal neurons on the outer nuclear membrane, rough endoplasmic reticulum (rER), and ribosomes. In dendrites, labeling was found in the rER and ribosomes and was diffusely distributed in spines. In the neuropil, diffuse labeling was seen in small axon terminals and unmyelinated axons, and the postsynaptic density (PSD) frequently had discrete labeling. Reelin-i was also found in glial somata and in small astrocytic processes. With rare exceptions, reelin-i in the adult was conspicuously absent from both the extracellular matrix (ECM) and the subcellular organelles, where secreted proteins are modified and taken back into the cell. Labeling in fetal cortex was similar to that in the adult except for prominent labeling in the ECM. The presence of reelin in adult spines, PSD, and terminals suggests that in the adult human reelin has a role in synaptic remodeling, which is consistent with the evidence for its role in long-term potentiation in the adult brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.