Growing evidence suggests that soluble Aβ species can drive Alzheimer disease (AD) pathogenesis by inducing a cascade of events including tau hyperphosphorylation, proteasome impairment and synaptic dysfunction. However, these studies have relied largely on in vitro approaches to examine the role of soluble Aβ in AD. In particular, it remains unknown whether soluble Aβ oligomers can facilitate the development of human wild-type tau pathology in vivo. To address this question, we developed a novel transgenic model that expresses low levels of APP with the Arctic familial AD mutation to enhance soluble Aβ oligomer formation in conjunction with wild-type human tau. Using a genetic approach, we show that reduction of β-site APP cleaving enzyme (BACE) in these “ArcTau” mice decreases soluble Aβ oligomers, rescues cognition, and more importantly also reduces tau accumulation and phosphorylation. Notably, BACE reduction decreases the postsynaptic mislocalization of tau in ArcTau mice, and reduces the association between NMDA receptors and PSD-95. These studies provide critical in vivo evidence for a strong mechanistic link between soluble Aβ, wild-type tau and synaptic pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.