A comprehensive investigation was undertaken in order to determine the effect of different reaction parameters on the molecular weights of polymers formed in a Suzuki polycondensation. In particular, we studied how the choice of solvent, base, ligand cocatalyst, palladium source, and monomers could affect the molecular weights. For these particular polymerizations, the best solvent and base were found to be CH2Cl2 and aqueous 3 M K3PO4, respectively. More interestingly, we determined that tri(o-tolyl)phosphine far surpassed not only the traditional triphenylphospine ligand cocatalyst, but also the more-recently developed hindered, electron-rich ligands that have yielded impressive results in small-molecule Suzuki coupling reactions. Molecular weights were also found to depend upon the source of palladium, with bis[tri(o-tolyl)phosphine]palladium(0) providing the best overall catalyst system. Finally, contrary to earlier reports, we found no advantage to replacing the more readily accessible bromide monomers with the corresponding iodides, and that pinacol boronic esters were inferior to the more traditional 1,3-propanediol boronic ester monomers. In sum, the work performed here shows that under optimized conditions, molecular weights on the order of 105 g/mol can be readily achieved with a Suzuki polycondensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.