Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the fermentation was carried out at 150 rpm, 28 ± 2°C using an inoculum size of 1 mL of 106cells. Yeasts were isolated from POME, dump site, and palm wine. The POME had chemical oxygen demand (COD) 114.8 gL−1, total solid 76 gL−1, total suspended solid (TSS) 44 gL−1and total lipid 35.80 gL−1. Raw POME supported accumulation of 4.42 gL−1dry yeast with amino acid content comparable or superior to the FAO/WHO standard for feed use SCP. Peak COD reduction (83%) was achieved with highest biomass accumulation in 96 h usingSaccharomycesspL31. POME can be used as carbon source with little or no supplementation to achieve waste-to-value by producing feed grade yeast with reduction in pollution potential.
Utilization of cassava pulp wastes for citric acid production was investigated using Aspergillus niger in a submerged culture. A series of experiments were designed on various fermentation parameters to establish the optimal conditions for citric acid production from cassava pulp. This study revealed that production parameters such as cassava pulp concentration, initial pH, incubation temperature, agitation, and nitrogen source and fermentation period had effect on the amount of citric acid produced from cassava pulp. Citric acid concentration increased as the concentration of cassava pulp increases up to 20% with maximum citric acid concentration of 14.9 ± 0.413 g/l after 120 hours of fermentation. pH 5.5 was the optimum with maximum citric acid concentration of 16.8 ± 0.23 g/l after 120 hours of fermentation. Incubation temperature at 300 C was the optimum, with citric acid concentration of 19.15 ± 0.43 g/l. Increased in agitation speed from 100 to 225 rpm gave the maximum citric acid concentration of 25.2 ± 0.32 g/l after 120 hours of fermentation. Soybean meal supplementation was the best maximum citric acid concentration of 28.2 ± 0.51 g/l. Evaluating the effect of different concentration of soybean meal shows that 0.3 % supplementation was the optimum with maximum concentration of 31.2 ±0.35g/l from cassava pulp after 120 hours of fermentation. The result suggested that citric acid can be accumulated using cassava pulp by Aspergillus niger in submerged culture during fermentation. Cassava pulp if well harnessed can be used for large scale citric acid production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.