<p>Opinion Mining also known as Sentiment Analysis, is a technique or procedure which uses Natural Language processing (NLP) to classify the outcome from text. There are various NLP tools available which are used for processing text data. Multiple research have been done in opinion mining for online blogs, Twitter, Facebook etc. This paper proposes a new opinion mining technique using Support Vector Machine (SVM) and NLP tools on newspaper headlines. Relative words are generated using Stanford CoreNLP, which is passed to SVM using count vectorizer. On comparing three models using confusion matrix, results indicate that Tf-idf and Linear SVM provides better accuracy for smaller dataset. While for larger dataset, SGD and linear SVM model outperform other models.</p>
Computer-based knowledge and computation systems are becoming major sources of leverage for multiple industry segments. Hence, educational systems and learning processes across the world are on the cusp of a major digital transformation. This paper seeks to explore the concept of an artificial intelligence and natural language processing (NLP) based intelligent tutoring system (ITS) in the context of computer education in primary and secondary schools. One of the components of an ITS is a learning assistant, which can enable students to seek assistance as and when they need, wherever they are. As part of this research, a pilot prototype chatbot was developed, to serve as a learning assistant for the subject Scratch (Scratch is a graphical utility used to teach school children the concepts of programming). By the use of an open source natural language understanding (NLU) or NLP library, and a slackbased UI, student queries were input to the chatbot, to get the sought explanation as the answer. Through a two-stage testing process, the chatbot’s NLP extraction and information retrieval performance were evaluated. The testing results showed that the ontology modelling for such a learning assistant was done relatively accurately, and shows its potential to be pursued as a cloud-based solution in future.
Remote health monitoring can offer a lot of advantage to all the players in healthcare industry and it can contribute to reduced healthcare expenses. Wireless medical sensor networks capable of accumulating and transferring vital parameters of patients play a crucial role in remote health monitoring. Security and privacy are major concerns preventing the patients from adopting this technology with an open mind. This paper presents a signature-based authentication protocol for remote health monitoring. The work also discusses an authentication protocol for the mutual authentication of users and medical server. The protocol does not require the server to maintain a password table. The proposed algorithms are resistant to various attacks such as replay attack, stolen verifier attack, and privileged insider attack. The work includes the informal and formal security analysis of the proposed protocols. Scyther tool is used for formal security analysis and the results show that the protocol is resistant to various common and automated attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.