The motion of DNA chain under electric field when it is in transient contact with the solid surfaces in aqueous solution was studied by single molecule fluorescence microscopy at the total internal reflection geometry (TIRFM). In situ observation discovered that single λ‐DNA chains driven by electric field made transient contact with the solid surface and made hitting–sliding–leaving‐like motion along the surface. By varying the surface chemistry, from the negative‐charged silanol group‐rich surface to positive‐charged amino group‐rich surface, as well as hydrophobic surfaces, the dependence of DNA mobility on the surface–DNA interaction was studied. The results show that a dependence of the mobility of DNA on the surface polarity with respect to DNA itself. The study on different surfaces rich of silanol, amide, amino, and methyl groups show a sequence of DNA mobility of silanol > amide > amino. The mobility of DNA on methyl terminated surface was found to be similar to that on amino surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2541–2546, 2009
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.