The discovery of six distinct polymorphisms in the genetic sequence encoding for the cytochrome P450 2C9 (CYP2C9) protein has stimulated numerous investigations in an attempt to characterize their population distribution and metabolic activity. Since the CYP2C9*1, *2 and *3 alleles were discovered first, they have undergone more thorough investigation than the recently identified *4, *5 and *6 alleles. Population distribution data suggest that the variant *2 and *3 alleles are present in approximately 35% of Caucasian individuals; however, these alleles are significantly less prevalent in African-American and Asian populations. In-vitro data have consistently demonstrated that the CYP2C9*2 and *3 alleles are associated with significant reductions in intrinsic clearance of a variety of 2C9 substrates compared with CYP2C9*1; however, the degree of these reductions appear to be highly substrate-dependent. In addition, multiple in-vivo investigations and clinical case reports have associated genotypes expressing the CYP2C9*2 and *3 alleles with significant reductions in both the metabolism and daily dose requirements of selected CYP2C9 substrates. Individuals expressing these variant genotypes also appear to be significantly more susceptible to adverse events with the narrow therapeutic index agents warfarin and phenytoin, particularly during the initiation of therapy. These findings have subsequently raised numerous questions regarding the potential clinical utility of genotyping for CYP2C9 prior to initiation of therapy with these agents. However, further clinical investigations evaluating the metabolic consequences in individuals expressing the CYP2C9*2, *3, *4, *5, or *6 alleles are required before large-scale clinical genotyping can be recommended.
The human CYP2Cs are an important subfamily of P450 enzymes that metabolize approximately 20% of clinically used drugs. There are four members of the subfamily, CYP2C8, CYP2C9, CYP2C19, and CYP2C18. Of these CYP2C8, CYP2C9, and CYP2C19 are of clinical importance. The CYP2Cs also metabolize some endogenous compounds such as arachidonic acid. Each member of this subfamily has been found to be genetically polymorphic. The most well-known of these polymorphisms is in CYP2C19. Poor metabolizers (PMs) of CYP2C19 represent approximately 3±5% of Caucasians, a similar percentage of African-Americans and 12±100% of Asian groups. The polymorphism affects metabolism of the anticonvulsant agent mephenytoin, proton pump inhibitors such as omeprazole, the anxiolytic agent diazepam, certain antidepressants, and the antimalarial drug proguanil. Toxic effects can occur in PMs exposed to diazepam, and the ef®cacy of some proton pump inhibitors may be greater in PMs than EMs at low doses of these drugs. A number of mutant alleles exist that can be detected by genetic testing. CYP2C9 metabolizes a wide variety of drugs including the anticoagulant warfarin, antidiabetic agents such as tolbutamide, anticonvulsants such as phenytoin, and nonsteroidal anti-in¯ammatory drugs. The incidence of functional polymorphisms is much lower, estimated to be 1/250 in Caucasians and lower in Asians. However, the clinical consequences of these rarer polymorphisms can be severe. Severe and life-threatening bleeding episodes have been reported in CYP2C9 PMs exposed to warfarin. Phenytoin has been reported to cause severe toxicity in PMs. New polymorphisms have been discovered in CYP2C8, which metabolizes taxol (paclitaxel). Genetic testing is available for all of the known CYP2C variant alleles.
Cytochrome P450 (CYP) 2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (Taxol). It is also the predominant P450 responsible for the metabolism of arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs) in human liver and kidney. In this study, we describe two new CYP2C8 alleles containing coding changes: CYP2C8*2 has an Ile269Phe substitution in exon 5 and CYP2C8*3 includes both Arg139Lys and Lys399Arg amino acid substitutions in exons 3 and 8. CYP2C8*2 was found only in African-Americans, while CYP2C8*3 occurred primarily in Caucasians. Neither occurred in Asians. The frequency of the CYP2C8*2 allele was 0.18 in African-Americans, and that of CYP2C8*3 was 0.13 in Caucasians. CYP2C8*1 (wild-type), CYP2C8*2 and CYP2C8*3 cDNAs were expressed in Escherichia coli, and the ability of these enzymes to metabolize both paclitaxel and arachidonic acid was assessed. Recombinant CYP2C8*3 was defective in the metabolism of both substrates. The turnover number of CYP2C8*3 for paclitaxel was 15% of CYP2C8*1. CYP2C8*2 had a two-fold higher Km and two-fold lower intrinsic clearance for paclitaxel than CYP2C8*1. CYP2C8*3 was also markedly defective in the metabolism of arachidonic acid to 11,12- and 14,15-EET (turnover numbers 35-40% that of CYP2C8*1). Thus, CYP2C8*3 is defective in the metabolism of two important CYP2C8 substrates: the anticancer drug paclitaxel and the physiologically important compound arachidonic acid. This polymorphism has important clinical and physiological implications in individuals homozygous for this allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.