Chondrocyte-laden collagen scaffolds were evaluated in extensive cartilage defects in an equine model. Arthroscopic techniques were used to implant a chondrocyte-collagen culture product in 15-mm defects in the lateral trochlear ridge of the femoropatellar joint of 12 horses. Ungrafted control defects were formed in the opposite joint. Groups of six horses were terminated at 4 and 8 months after implantation and the repair sites, adjacent cartilage, and remote cartilage within each femoropatellar joint examined biochemically. Eight months following surgery the relative proportions of type II collagen in grafted and ungrafted defects, determined using the ratio of cyanogen bromide cleavage products alpha 1(II)CB10/alpha 2(I)CB3,5, were not significantly different (31.57 +/- 2.76% and 26.88 +/- 2.76%, respectively). Aggrecan content was significantly improved in grafted defects (85.61 +/- 6.51 and 74.91 +/- 10.31 micrograms/mg dry weight). Cartilage surrounding grafted defects also showed improved maintenance of cartilage glycosaminoglycan content. Thus, chondrocyte grafting in collagen scaffold vehicles improved the aggrecan content in extensive cartilage defects and surrounding normal cartilage. However, given the continued disparity between repair tissue and normal cartilage aggrecan content, and the low proportion of type II collagen in grafted defects, the utility of collagen scaffolds for chondrocyte grafting of large cartilage defects seems limited.
Based on the methods used, acute synovitis prevented changes induced by intra-articular MPA alone. Results suggested that the effect of intra-articular MPA on joint metabolism was different between inflamed and normal joints. Experimental studies must consider the effect of inflammation, as well as the potential to introduce in vitro culture artifacts when investigating the effect of intra-articular corticosteroids on chondrocyte function.
Results indicated that commercial cTnI analyzers can be used to measure serum cTnI concentration from dogs and cats. Additionally, our preliminary characterization of the feline cTnI gene may facilitate further investigation of cTnI and its role in familial hypertrophic cardiomyopathy in cats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.