Obesity and related morbidities pose a major health threat. Obesity is associated with increased blood concentrations of the anorexigenic hormone leptin; however, obese individuals are resistant to its anorexigenic effects. We examined the phenomenon of reduced leptin signaling in a high-fat diet-induced obesity model in mice. Obesity promoted matrix metalloproteinase-2 (Mmp-2) activation in the hypothalamus, which cleaved the leptin receptor's extracellular domain and impaired leptin-mediated signaling. Deletion of Mmp-2 restored leptin receptor expression and reduced circulating leptin concentrations in obese mice. Lentiviral delivery of short hairpin RNA to silence in the hypothalamus of wild-type mice prevented leptin receptor cleavage and reduced fat accumulation. In contrast, lentiviral delivery of in the hypothalamus of mice promoted leptin receptor cleavage and higher body weight. In a genetic mouse model of obesity, transduction of cleavage-resistant leptin receptor in the hypothalamus reduced the rate of weight gain compared to uninfected mice or mice infected with the wild-type receptor. Immunofluorescence analysis showed that astrocytes and agouti-related peptide neurons were responsible for Mmp-2 secretion in mice fed a high-fat diet. These results suggest a mechanism for leptin resistance through activation of Mmp-2 and subsequent cleavage of the extracellular domain of the leptin receptor.
Traumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer’s (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35–40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.
BACKGROUND Irreversible hemorrhagic shock is characterized by hyporesponsiveness to vasopressor and fluid therapy. Little is known, however, about the mechanisms that contribute to this phenomenon. Previous studies have shown that decreased intestinal perfusion in hemorrhagic shock leads to proteolytically-mediated increases in gut permeability, with subsequent egress of vasoactive substances systemically. Maintenance of blood pressure is achieved in part by α1 receptor modulation, which may be affected by vasoactive factors; we thus hypothesized that decreases in hemodynamic stability and vasopressor response in shock can be prevented by enteral protease inhibition. METHODS Rats were exposed to experimental hemorrhagic shock (35 mmHg mean arterial blood pressure for 2 hrs, followed by reperfusion for 2 hrs) and challenged with phenylephrine (2 μg/kg) at discrete intervals to measure vasopressor responsiveness. A second group of animals received enteral injections with the protease inhibitor tranexamic acid (TXA) (127 mM) along the small intestine and cecum one hour following induction of hemorrhagic shock. RESULTS Blood pressure response (duration and amplitude) to phenylephrine after reperfusion was significantly attenuated in animals subjected to hemorrhagic shock compared to baseline and control non-shocked animals, and was restored to near baseline by enteral TXA. Arteries from shocked animals also displayed decreased α1 receptor density with restoration to baseline following enteral TXA treatment. In vitro, rat shock plasma decreased α1 receptor density in smooth muscle cells, which was also abrogated by enteral TXA treatment. CONCLUSIONS Results from this study demonstrate that experimental hemorrhagic shock leads to decreased response to the α1-selective agonist phenylephrine and decreased α1 receptor density via circulating shock factors. These changes are mitigated by enteral TXA with correspondingly improved hemodynamics. Proteolytic inhibition in the lumen of the small intestine improves hemodynamics in hemorrhagic shock, possibly by restoring α1 adrenergic functionality necessary to maintain systemic blood pressure and perfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.