Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.
Nosema ceranae is a parasite of the epithelial ventricular cells of the honey bee that belongs to the microsporidian phylum, a biological group of single-cell, spore-forming obligate intracellular parasites found in all major animal lineages. The ability of host cells to accommodate a large parasitic burden for several days suggests that these parasites subvert the normal host cells to ensure optimal environmental conditions for growth and development. Once infected, cells can counteract the invasive pathogen by initiating their own death by apoptosis as a defence strategy. To determine whether N. ceranae blocks apoptosis in infected ventricular cells, cell death was assessed in sections of the ventriculum from experimentally infected honey bees using the TUNEL assay and by immunohistochemistry for caspase-3. Ventricular epithelial cells from infected bees were larger than those in the uninfected control bees, and they contained N. ceranae at both mature and immature stages in the cytoplasm. Apoptotic nuclei were only observed in some restricted areas of the ventriculum, whereas apoptosis was typically observed throughout the epithelium in uninfected bees. Indeed, the apoptotic index was higher in uninfected versus infected ventriculi. Our results suggested that N. ceranae prevents apoptosis in epithelial cells of infected ventriculi, a mechanism possible designed to enhance parasite development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.