Histological analyses of dental development have been conducted for several decades despite few studies assessing the accuracy of such methods. Using known-period incremental features, the crown formation time and age at death of five pig-tailed macaques ( Macaca nemestrina ) were estimated with standard histological techniques and compared with known ages. Estimates of age at death ranged from 8.6% underestimations to 15.0% overestimations, with an average 3.5% overestimate and a 7.2% average absolute difference. Several sources of error were identified relating to preparation quality and section obliquity. These results demonstrate that histological analyses of dental development involving counts and measurements of short-and long-period incremental features may yield accurate estimates, particularly in well-prepared material. Values from oblique sections (or most naturally fractured teeth) should be regarded with caution, as obliquity leads to inflated cuspal enamel formation time and underestimated imbricational formation time. Additionally, Shellis's formula for extension rate and crown formation time estimation was tested, which significantly overestimated crown formation time due to underestimated extension rate. It is suggested that Shellis' method should not be applied to teeth with short, rapid periods of development, and further study is necessary to validate this application in other material.
Somatic growth is not a simple linear process with a constant rate of growth. The most successful attempts to quantify growth as a function of age or size have employed nonlinear techniques. Sexual dimorphism of primate growth, weight vs. age, was examined using nonlinear models with Sirianni and Swindler's ([1985] Growth and Development of the Pigtailed Macaque, Boca Raton, FL: CRC Press) growth data on the pigtailed macaque (Macaca nemestrina). The best fit of several exponential growth models was the Gompertz curve: Weight = a*e-b*e-K*age Different multiple phase models were also fit, where each phase represents a distinct exponential component. The two-phase models proved to be the best (R2 = .0.84 for females, 0.91 for males), suggesting that there are two growth spurts, one in infancy and one at puberty. The timing of the beginning and end of the first spurt is the same in males and females, but the rate, and value of the asymptote for this phase, is greater in males. The timing of the second spurt is earlier, and the rate of growth for this spurt is smaller in females than males. The sexual dimorphism in these species is not a simple rate change, but a complex interaction of timing and rate over the entire period of growth. It would be impossible to separate these entities with a linear, polynomial, or single-phase model of the data. While these data and results complement much of the existing work on adult dimorphism, they also emphasize the vital role that ontogenetic data have in elucidating the underlying evolutionary mechanisms that generate sexual dimorphism.
Postnatal growth of the cranial base was longitudinally studied in 21 male and 11 female Macaca nemestrina. The basicranium of each animal was marked with tantulum implants in order that the tracings of each serial roentgenogram could be superimposed. Between the ages of 3.0 and 5.0 years the degree of sexual demorphism in both angular and linear dimensions increased. The cranial base flattened as a result of the upward and forward migration of nasion and the upward and backward relocation of basion. The movement of basion was primarily due to differential growth recorded at the spheno-occipital synchondrosis. Sexual difference in the relative growth of this synchondrosis resulted in a longer and somewhat flatter male cranial base. Male and female velocity curves showed accelerations that coincide with their estimated age for the onset of puberty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.