BackgroundThe TET family of dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), but their involvement in establishing normal 5mC patterns during mammalian development and their contributions to aberrant control of 5mC during cellular transformation remain largely unknown. We depleted TET1, TET2, and TET3 in a pluripotent embryonic carcinoma cell model and examined the impact on genome-wide 5mC, 5hmC, and transcriptional patterns.ResultsTET1 depletion yields widespread reduction of 5hmC, while depletion of TET2 and TET3 reduces 5hmC at a subset of TET1 targets suggesting functional co-dependence. TET2 or TET3 depletion also causes increased 5hmC, suggesting these proteins play a major role in 5hmC removal. All TETs prevent hypermethylation throughout the genome, a finding dramatically illustrated in CpG island shores, where TET depletion results in prolific hypermethylation. Surprisingly, TETs also promote methylation, as hypomethylation was associated with 5hmC reduction. TET function is highly specific to chromatin environment: 5hmC maintenance by all TETs occurs at polycomb-marked chromatin and genes expressed at moderate levels; 5hmC removal by TET2 is associated with highly transcribed genes enriched for H3K4me3 and H3K36me3. Importantly, genes prone to hypermethylation in cancer become depleted of 5hmC with TET deficiency, suggesting that TETs normally promote 5hmC at these loci. Finally, all three TETs, but especially TET2, are required for 5hmC enrichment at enhancers, a condition necessary for expression of adjacent genes.ConclusionsThese results provide novel insight into the division of labor among TET proteins and reveal important connections between TET activity, the chromatin landscape, and gene expression.
Altogether, integration of multiple epigenetic parameters is a powerful tool for identifying epigenetically regulated drivers of HCC and elucidating how epigenome deregulation contributes to liver disease and HCC. This article is protected by copyright. All rights reserved.
BackgroundGlioma stem cells (GSCs) are a subpopulation of stem-like cells that contribute to glioblastoma (GBM) aggressiveness, recurrence, and resistance to radiation and chemotherapy. Therapeutically targeting the GSC population may improve patient survival, but unique vulnerabilities need to be identified.ResultsWe isolate GSCs from well-characterized GBM patient-derived xenografts (PDX), characterize their stemness properties using immunofluorescence staining, profile their epigenome including 5mC, 5hmC, 5fC/5caC, and two enhancer marks, and define their transcriptome. Fetal brain-derived neural stem/progenitor cells are used as a comparison to define potential unique and common molecular features between these different brain-derived cells with stem properties. Our integrative study reveals that abnormal expression of ten-eleven-translocation (TET) family members correlates with global levels of 5mC and 5fC/5caC and may be responsible for the distinct levels of these marks between glioma and neural stem cells. Heterogenous transcriptome and epigenome signatures among GSCs converge on several genes and pathways, including DNA damage response and cell proliferation, which are highly correlated with TET expression. Distinct enhancer landscapes are also strongly associated with differential gene regulation between glioma and neural stem cells; they exhibit unique co-localization patterns with DNA epigenetic mark switching events. Upon differentiation, glioma and neural stem cells exhibit distinct responses with regard to TET expression and DNA mark changes in the genome and GSCs fail to properly remodel their epigenome.ConclusionsOur integrative epigenomic and transcriptomic characterization reveals fundamentally distinct yet potentially targetable biologic features of GSCs that result from their distinct epigenomic landscapes.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1420-6) contains supplementary material, which is available to authorized users.
The interplay between transcription factors and epigenetic writers like the DNA methyltransferases (DNMTs), and the role of this interplay in gene expression, is being increasingly appreciated. ZBTB24, a poorly characterized zinc-finger protein, or the de novo methyltransferase DNMT3B, when mutated, cause Immunodeficiency, Centromere Instability, and Facial anomalies (ICF) syndrome, suggesting an underlying mechanistic link. Chromatin immunoprecipitation coupled with loss-of-function approaches in model systems revealed common loci bound by ZBTB24 and DNMT3B, where they function to regulate gene body methylation. Genes coordinately regulated by ZBTB24 and DNMT3B are enriched for molecular mechanisms essential for cellular homeostasis, highlighting the importance of the ZBTB24-DNMT3B interplay in maintaining epigenetic patterns required for normal cellular function. We identify a ZBTB24 DNA binding motif, which is contained within the promoters of most of its transcriptional targets, including CDCA7, AXIN2, and OSTC. Direct binding of ZBTB24 at the promoters of these genes targets them for transcriptional activation. ZBTB24 binding at the promoters of RNF169 and CAMKMT, however, targets them for transcriptional repression. The involvement of ZBTB24 targets in diverse cellular programs, including the VDR/RXR and interferon regulatory pathways, suggest that ZBTB24’s role as a transcriptional regulator is not restricted to immune cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.