It has long been held that electrical excitation spreads from cell-to-cell in the heart via low resistance gap junctions (GJ). However, it has also been proposed that myocytes could interact by non-GJ-mediated “ephaptic” mechanisms, facilitating propagation of action potentials in tandem with direct GJ-mediated coupling. We sought evidence that such mechanisms contribute to cardiac conduction. Using super-resolution microscopy, we demonstrate that Nav1.5 is localized within 200 nm of the GJ plaque (a region termed the perinexus). Electron microscopy revealed close apposition of adjacent cell membranes within perinexi suggesting that perinexal sodium channels could function as an ephapse, enabling ephaptic cell-to-cell transfer of electrical excitation. Acute interstitial edema (AIE) increased intermembrane distance at the perinexus and was associated with preferential transverse conduction slowing and increased spontaneous arrhythmia incidence. Inhibiting sodium channels with 0.5 μM flecainide uniformly slowed conduction, but sodium channel inhibition during AIE slowed conduction anisotropically and increased arrhythmia incidence more than AIE alone. Sodium channel inhibition during GJ uncoupling with 25 μM carbenoxolone slowed conduction anisotropically and was also highly proarrhythmic. A computational model of discretized extracellular microdomains (including ephaptic coupling) revealed that conduction trends associated with altered perinexal width, sodium channel conductance, and GJ coupling can be predicted when sodium channel density in the intercalated disk is relatively high. We provide evidence that cardiac conduction depends on a mathematically predicted ephaptic mode of coupling as well as GJ coupling. These data suggest opportunities for novel anti-arrhythmic therapies targeting noncanonical conduction pathways in the heart.Electronic supplementary materialThe online version of this article (doi:10.1007/s00424-014-1675-z) contains supplementary material, which is available to authorized users.
Existing models of electrical activity in myocardial tissue are unable to easily capture the effects of ephaptic coupling. Homogenized models do not account for cellular geometry, while detailed spatial models are too complicated to simulate in three dimensions. Here we propose a unique model that accurately captures the geometric effects while being computationally efficient. We use this model to provide an initial study of the effects of changes in extracellular geometry, gap junctional coupling, and sodium ion channel distribution on propagation velocity in a single 1D strand of cells. In agreement with previous studies, we find that ephaptic coupling increases propagation velocity at low gap junctional conductivity while it decreases propagation at higher conductivities. We also find that conduction velocity is relatively insensitive to gap junctional coupling when sodium ion channels are located entirely on the cell ends and cleft space is small. The numerical efficiency of this model, verified by comparison with more detailed simulations, allows a thorough study in parameter variation and shows that cellular structure and geometry has a nontrivial impact on propagation velocity. This model can be relatively easily extended to higher dimensions while maintaining numerical efficiency and incorporating ephaptic effects through modeling of complex, irregular cellular geometry.cardiac electrophysiology | extracellular conductivity | microdomain effects W hile gap junctional coupling is usually considered to be the primary mechanism for action potential propagation, there is evidence that other mechanisms are important. In particular, only a moderate reduction of cardiac propagation velocity was found in murine hearts with inactivated Connexin43 (Cx43) gene (1). In mice with heterozygous Cx43AE down-regulation, either a 23-44% decrease in propagation velocity (2-4) or no discernible decrease in propagation velocity (5-8) was found. In Cx43 − ∕− mice with no expression of the protein, propagation was still found, although discontinuous and at much slower speeds (7). These experimental findings are in conflict with the classical understanding of how gap junctions determine propagation velocity.One possible explanation for these intriguing observations is that ephaptic (i.e., field effect) coupling may be significant (1, 9-12). However, the study of ephaptic effects is made difficult by the fact that these effects are most important in microdomains such as junctional clefts.Existing homogenized models, while computationally accessible, are not able to deal with the effects of microdomains and hence do not capture the effects of ephaptic coupling (13,14). On the other hand, detailed spatial models have shown that geometry plays an important role in the conduction velocity but are too expensive to implement for a full 3D tissue (11,12,(15)(16)(17)(18)(19).Here we present a model that captures the effects of the intricate cellular geometry with simplifications that will allow the model to be extended more readily to t...
Several studies have disagreed on measurements of cardiac conduction velocity (CV) in mice with a heterozygous knockout of the connexin gene Gja1 – a mutation that reduces the gap junction (GJ) protein, Connexin43 (Cx43) by 50%. We noted that perfusate ionic composition varied between studies and hypothesized that extracellular ionic concentration modulates CV dependence on GJs. CV was measured by optically mapping wild type (WT) and heterozygous null (HZ) hearts serially perfused with solutions previously associated with no change (Solution 1) or CV slowing (Solution 2). In WT hearts, CV was similar for Solutions 1 and 2. However, consistent with the hypothesis, Solution 2 in HZ hearts slowed transverse CV (CVT) relative to Solution 1. Previously, we showed CV slowing in a manner consistent with ephaptic conduction correlated with increased perinexal inter-membrane width (WP) at GJ edges. Thus, WP was measured following perfusion with systematically adjusted [Na+]o and [K+]o in Solutions 1 and 2. A wider WP was associated with reduced CVT in WT and HZ hearts, with the greatest effect in HZ hearts. Increasing [Na+]o increased CVT only in HZ hearts. Increasing [K+]o slowed CVT in both WT and HZ hearts with large WP but only in HZ hearts with narrow WP. Conclusion: When perinexi are wide, decreasing excitability by modulating [Na+]o and [K+]o increases CV sensitivity to reduced Cx43. By contrast, CV is less sensitive to Cx43 and ion composition when perinexi are narrow. These results are consistent with cardiac conduction dependence on both GJ and non-GJ (ephaptic) mechanisms.
While it is widely believed that conduction in cardiac tissue is regulated by gap junctions, recent experimental evidence suggests that the extracellular space may play a significant role in action potential propagation. Cardiac tissue with low gap junctional coupling still exhibits conduction, with conflicting degrees of slowing that may be due to variations in the extracellular space. Inhomogeneities in the extracellular space caused by the complex cellular structure in cardiac tissue can lead to ephaptic, or field effect, coupling. Here, we present data from simulations of a cylindrical strand of cells in which we see the dramatic effect highly resistant extracellular spaces have on propagation velocity. We find that ephaptic effects occur in all areas of small extracellular spaces and are not restricted to the junctional cleft between cells. This previously unrecognized type of field coupling, which we call lateral coupling, can allow conduction in the absence of gap junctions. We compare our results with the classically used cable theory, demonstrating the quantitative difference in propagation velocity arising from the cellular geometry. Ephaptic effects are shown to be highly dependent upon parameter values, frequently enhancing, but sometimes decreasing propagation speed. Our mathematical analysis incorporates the inhomogeneities in the extracellular microdomains that cannot be directly measured by experimental techniques and will aid in optimizing cardiac treatments that require manipulation of the cellular geometry and understanding heart functionality.
Background It was recently demonstrated that cardiac sodium channels (Nav1.5) localized at the perinexus, an intercalated disc nanodomain associated with gap junctions (GJ), may contribute to electrical coupling between cardiac myocytes via an ephaptic mechanism. Impairment of ephaptic coupling by acute interstitial edema (AIE)-induced swelling of the perinexus was associated with arrhythmogenic, anisotropic conduction slowing. Given that Kir2.1 has also recently been reported to localize at intercalated discs (ID), we hypothesized that Kir2.1 channels may reside within the perinexus and that inhibiting them may mitigate arrhythmogenic conduction slowing observed during AIE. Methods and Results Using gSTED and STORM super-resolution microscopy, we indeed find that a significant proportion of Kir2.1 channels reside within the perinexus. Moreover, whereas Nav1.5 inhibition during AIE exacerbated arrhythmogenic conduction slowing, inhibiting Kir2.1 channels during AIE preferentially increased transverse conduction velocity - decreasing anisotropy and ameliorating arrhythmia risk compared to AIE alone. Comparison of our results with a nanodomain computer model identified enrichment of both Nav1.5 and Kir2.1 at intercalated discs as key factors underlying the experimental observations. Conclusions We demonstrate that Kir2.1 channels are localized within the perinexus alongside Nav1.5 channels. Further, targeting Kir2.1 modulates intercellular coupling between cardiac myocytes, anisotropy of conduction and arrhythmia propensity in a manner consistent with a role for ephaptic coupling in cardiac conduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.