Vignettes are a valid tool for measuring the quality of clinical practice. They can be used for diverse clinical settings, diseases, physician types, and situations in which case-mix variation is a concern. They are inexpensive and easy to use. Vignettes are particularly useful for comparing quality among and within sites and may be useful for longitudinal evaluations of interventions intended to change clinical practice.
The sterility assurance community is facing significant challenges. A relatively recent challenge is the pressure on manufacturing supply chains resulting from the limited availability of capacity for terminal sterilization of healthcare products. The current challenge is finding solutions for innovative new products, especially biologics and combination products, that offer great promise for patients around the world. This challenge will become more prevalent in the future as products advance. This article frames new paradigms and tools being developed to address these challenges. Foundational principles and current realities from each sector are reviewed so that sterility assurance professionals have a solid base from which to build strategies.
In the radiation sterilization arena, the question often arises as to whether radiation resistance of microorganisms might be affected by the energy level of the radiation source and the rate of the dose delivered (kGy/time). The basis for the question is if the microbial lethality is affected by the radiation energy level and/or the rate the dose is delivered, then the ability to transfer dose among different radiation sources could be challenged. This study addressed that question by performing a microbial inactivation study using two radiation sources (gamma and electron beam [E-beam]), two microbial challenges (natural product bioburden and biological indicators), and four dose rates delivered by three energy levels (1.17 MeV [gamma], 1.33 MeV [gamma], and 10 MeV [high-energy E-beam]). Based on analysis of the data, no significant differences were seen in the rate of microbial lethality across the range of radiation energies evaluated. In summary, as long as proof exists that the specified dose is delivered, dose is dose.
The applications for sterility testing in the validation and routine control of sterilization of medical devices have changed dramatically over the years. As the definition of sterility assurance has evolved, so has the state of the science associated with product sterility testing. Historically, product sterility testing has been applied to such things as sterilization validation, sterilization lot release, packaging qualification, aseptic processing qualification, and determination of shelf life for the packaged medical device. In most of these cases, however, the results obtained from performing sterility testing on products do not provide the desired confirmation and assurance. Utilizing sterility testing on fully processed finished product is not appropriate for determination of sterilization process effectiveness, sterility assurance level, package integrity, or shelf life. The industry has developed more robust methods for validation of these applications to assure sterility and package performance. This article outlines the appropriate applications for sterility testing and highlight the applications currently in use that have significant limitations within the results and introduce undesirable risk to the validity of the data.
Selection of a sterilization modality for a medical device is a critical decision that requires sterility assurance subject matter experts (SME)s to work collaboratively with various company functions. The sterility assurance SME is responsible and accountable for the sterilization modality decision for a product. The modality selection process starts with the sterility assurance SME partnering with research and development to ensure that the sterilization modality allows the device to deliver its intended function in patient care. After the sterilization modality is selected, the sterility assurance SME needs to work with other partners, including quality, supply chain/logistics, operations, and regulatory, to ensure that the selected sterilization modality is appropriately integrated into the end-to-end process. Collaborative partnerships between sterility assurance experts and key partners regarding sterilization modality selection reduce the potential for negative impacts within the end-to-end sterility assurance process, including impacts on product functionality, increased regulatory approval timelines, and inefficiencies and risks throughout the supply chain. This article describes aspects of a comprehensive approach to sterilization modality selection, including critical information necessary to address each of the key considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.