Calcium silicate-based materials have been widely studied due to their resemblance to, and similar applicability of, mineral trioxide aggregate (MTA). Among these, Biodentine™ (BD) was specifically designed as a "dentin replacement" material for applications such as root perforations, apexification, treatment of resorptive lesions, and as a retrograde filling material. The present study aimed to assess the in vitro response of human primary osteoblasts to BD using MTA Angelus TM as a reference material, by simultaneously analyzing three different cell viability parameters, namely mitochondrial activity, membrane integrity, and cell density. BD and MTA extracts were prepared by incubation on culture media for 24 h or 42 days after mixing. Primary human osteoblasts were exposed to extracts for 24 h, at 37 o C with 5% CO 2 , and cell viability was evaluated by the XTT, NRU, and CVDE assays. Both materials induced cell viability levels higher than 70% when extracted for 24 h. However, when cells were exposed to extracts with increased conditioning times, MTA presented significant cytotoxic effects (p < 0.05) in comparison to the control and MTA at 24 h. After 42 days, the XTT assay identified a significant reduction in cell viability by BD when compared to the control (p<0.05), despite the fact that levels above the 70% viability cutoff were attained for biocompatible materials. It can be concluded that BD is cytocompatible with human primary osteoblasts, indicating its adequacy in direct contact with bone tissues.
Context:A novel root-filling material based on the incorporation of ultrafine alkaline bioactive glass particles (bioactive gutta-percha, [BGP]) was developed to work without sealer.Aim:In the present study, the objective was to verify the in vitro biological response to this material by assessing its cytocompatibility.Materials and Methods:Prototypes of BGP were compared to conventional gutta-percha (GP), dense polystyrene beads as a negative control and fragments of latex as a positive control. Extracts of each material were prepared according to ISO 10993-5:2009, and human osteoblast-like cells in primary culture were exposed to all extracts for 24 h. Cell viability was assayed sequentially for three different parameters: mitochondrial activity, membrane integrity, and cell density.Statistical Analysis Used:Nonparametric analysis (using Kruskal–Wallis test combined with post hoc Dunn's test) was performed for comparison among groups, with significance established at 5%.Results:BGP reduced mitochondrial activity to 62% of control, but presented no toxicity on membrane integrity and proliferation assays. BGP effect on metabolism was dose-dependent and reduced to acceptable levels with dilution.Conclusion:The novel GP material presented slight dose-dependent effects on cell metabolism but did not affect cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.