The inability to approach systematically the high level of ambiguity present in the early design phases of space systems causes long, highly iterative, and costly design cycles. A process is introduced and described to capture decision maker preferences and use them to generate and evaluate a multitude of space system designs, while providing a common metric that can be easily communicated throughout the design enterprise. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows for a more thorough exploration of the design tradespace. Multi-attribute tradespace exploration with concurrent design, a process incorporating decision theory into model-and simulation-based design, has been applied to several space system projects at the Massachusetts Institute of Technology. Preliminary results indicate that this process can improve the quality of communication to resolve more quickly project ambiguity and to enable the engineer to discover better value designs for multiple stakeholders. The process is also integrated into a concurrent design environment to facilitate the transfer of knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs, for example, scientists, engineers, managers, etc. Multi-attribute tradespace exploration with concurrent design couples decision makers more closely to the design and, most important, maintains their presence between formal reviews.
Nomenclature
K= multi-attribute utility normalization constant k i = multi-attribute utility scaling factor for attribute i N = number of attributes U (X) = multi-attribute utility function U i (X i ) = single attribute utility function i X = set of multiple attributes 1, . . . , N X i = single attribute i
Introduction
SPACE system engineers have been developing effective systems for about 50 years, and their accomplishments are a testament to human ingenuity. In addition to tackling the complex technical challenges in building these systems, engineers must also cope with the changing political and economic context for space system design and development. The history, scope, and scale of space systems results in a close tie with government and large budgets. The postCold War era has resulted in much smaller budgets and a space industry that needs to do more with less. Time and budget pressures can result in corner cutting (such as the Mars program) and careless accounting (such as the International Space Station program).Space system design often starts with needs and a concept. Engineers perform trade studies by setting baselines and making minor changes to seek improvement in performance, cost, schedule, and risk. The culture of an industry that grew through an Apollo race to the moon and large defense contracts in the 1970s and 1980s is slow to adapt a better way to design systems to ensure competitiveness in a r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.