An experimental investigation into microscale transformation characteristics of polycrystalline NiTi wires of 500 lm diameter during shape memory cycling is discussed, with emphasis on the characterization of a pronounced heterogeneity in the strain distribution evident during detwinning of the martensite phase upon application of load and its persistence throughout the actuation cycle. Using scanning electron microscopy-digital image correlation, full-field strain maps at the microscale were obtained during shape memory cycling. It was found that the strains induced by detwinning were quite heterogeneous at the microscale, and could display a large degree of similarity with thermo-mechanical cycling that tended to increase as cycling progressed. Residual strain concentrated at locations where strain accumulation from detwinning and plasticity were significant, indicating that martensitic detwinning and the associated plasticity that occurs with it is spatially correlated to the subsequent accumulation of residual strain at the microscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.