Acacia arabica commonly known as “babul” has been widely used for the treatment of numerous diseases, including diabetes due to their potential pharmacological actions. The aim of the present study was to investigate the insulinotropic and anti-diabetic properties of ethanol extract of Acacia arabica (EEAA) bark through in vitro and in vivo studies in high fat-fed (HFF) rats. EEAA at 1.6-5000 µg/mL significantly increased (p<0.05-0.001) insulin secretion with 5.6 mM and 16.7 mM glucose, respectively from clonal pancreatic BRIN BD11 β-cells. Similarly, EEAA at 10-40 µg/mL demonstrated a substantial (p<0.05-0.001) insulin secretory effect with 16.7 mM glucose from isolated mouse islets, with a magnitude comparable to 1 µM GLP-1. Diazoxide, verapamil, and calcium-free conditions decreased insulin secretion by 25-26%. The insulin secretory effect was further potentiated (p<0.05-0.01) with 200 µM IBMX (1.5-fold), 200 µM tolbutamide (1.4-fold), and 30 mM KCl (1.4-fold). EEAA at 40 µg/ml, induced membrane depolarization and elevated intracellular Ca2+ as well as increased (p<0.05-0.001) glucose uptake in 3T3L1 cells and inhibited starch digestion, glucose diffusion, dipeptidyl peptidase-IV (DPP-IV) enzyme activity, and protein glycation by 15-38%, 11-29%, 15-64% and 21-38% (p<0.05-0.001) respectively. In HFF rats, EEAA (250 mg/5 ml/kg) improved glucose tolerance, plasma insulin, and GLP-1 levels, and lowered DPP-IV enzyme activity. Phytochemical screening of EEAA revealed the presence of flavonoids, tannins and anthraquinone. These naturally occurring phytoconstituents may contribute to the potential anti-diabetic actions of EEAA. Thus, our finding suggests that EEAA, as a good source of anti-diabetic constituents, would be beneficial for type 2 diabetes patients.
Diabetes mellitus, a major cause of mortality around the globe, can result in several secondary complications, including diabetic foot syndrome, which is brought on by diabetic neuropathy and ischemia. Approximately 15% of diabetic patients suffer from diabetic foot complications, and among them 25% are at risk of lower limb amputations. Diabetic foot ulcers are characterized as skin lesions, gangrene, or necrosis, and may develop due to several reasons, including hyperglycemia and slower wound healing in diabetic patients. A management protocol involving wound cleaning, oral antibiotics, skin ointments, and removing dead tissue is currently followed to treat diabetic foot ulcers. In severe cases, amputation is performed to prevent the infection from spreading further. The existing therapy can be costly and present adverse side effects. Combined with a lack of vascular surgeons, this ultimately results in disability, especially in developing nations. There is a growing interest in the use of alternative therapies, such as medicinal plants, to discover more efficient and affordable treatments for diabetic foot syndrome. It has been observed that treatment with numerous plants, including Carica papaya, Annona squamosa, Catharanthus roseus, and Centella asiatica, promotes wound healing, reduces inflammation, and may decrease the number of amputations. However, little information is currently available on the prevention and management of diabetic foot ulcers, and additional research is necessary to completely understand the role of alternative therapies in the treatment of diabetic foot complications.
Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although, several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serve as a source of primary healthcare and plant-based foods in many low and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically-active phytoconstituents and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field.
Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serves as a source of primary healthcare and plant-based foods in many low- and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion, and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically active phytoconstituents, and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.