The last decade has witnessed an increased interest in applying machine learning techniques to predict faults and anomalies in the operation of wind turbines. These efforts have lately been dominated by deep learning techniques which, as in other fields, tend to outperform traditional machine learning algorithms given sufficient amounts of training data. An important shortcoming of deep learning models is their lack of transparency—they operate as black boxes and typically do not provide rationales for their predictions, which can lead to a lack of trust in predicted outputs. In this article, a novel hybrid model for anomaly prediction in wind farms is proposed, which combines a recurrent neural network approach for accurate classification with an XGBoost decision tree classifier for transparent outputs. Experiments with an offshore wind turbine show that our model achieves a classification accuracy of up to 97%. The model is further able to generate detailed feature importance analyses for any detected anomalies, identifying exactly those components in a wind turbine that contribute to an anomaly. Finally, the feasibility of transfer learning is demonstrated for the wind domain by porting our “offshore” model to an unseen dataset from an onshore wind farm. The latter model achieves an accuracy of 65% and is able to detect 85% of anomalies in the unseen domain. These results are encouraging for application to wind farms for which no training data are available, for example, because they have not been in operation for long.
Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines and associated costs. Machine learning has been applied to fault prediction in wind turbines, but these predictions have not been supported with suggestions on how to avert and fix faults. We present a data-to-text generation system utilising transformers for generating corrective maintenance strategies for faults using SCADA data capturing the operational status of turbines. We achieve this in two stages: a first stage identifies faults based on SCADA input features and their relevance. A second stage performs content selection for the language generation task and creates maintenance strategies based on phrase-based natural language templates. Experiments show that our dual transformer model achieves an accuracy of up to 96.75% for alarm prediction and up to 75.35% for its choice of maintenance strategies during content-selection. A qualitative analysis shows that our generated maintenance strategies are promising. We make our humanauthored maintenance templates publicly available, and include a brief video explaining our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.