In recent years, the emerging fear of an energy crisis in central Europe has caused an increased demand for distributed energy resources (DER), especially small photovoltaic rooftop installations up to 10 kWp. From a technical point of view, distributed PV in low-voltage networks is associated with the risk of power quality violation, overvoltage, voltage unbalance, harmonics, and violation of the thermal limit of phase conductors, neutral conductors, and transformers. Distribution system operators (DSO) are currently in a position to determine the amount of installed PV power for which reliable and safe network operation is ensured, also known as the photovoltaic hosting capacity (PVHC). The presented study describes a stochastic methodology for PVHC estimation and uses it to analyze a typical LV rural network in the Slovak Republic. Detailed and precise calculations are performed on the 4-wire LV model with accurate results. In this study, we, thus, profoundly analyze the problems with voltage violation, unbalanced voltage energy losses, and the thermal loading effect of increasing PV penetration. The results show that overvoltage events are the main factor limiting the PVHC in LV systems. This conclusion is in accordance with the experience of the DSO in the Slovak and Czech Republic. Subsequently, the study focuses on the possibilities of increasing PVHC using those tools typically available for DSO, such as changes in PV inverter power factors and no-load tap changer transformers. The results are compared with those derived from similar analyses, but we ultimately find that the proposed solution is problematic due to the high variability of approaches and boundary conditions. In conclusion, the paper discusses the issue of the acceptable risk of overvoltage violation in the context of PVHC and lowering losses in LV networks.
This paper is aimed on the calculation of the electrical parameters of the overhead transmission lines. Standard transposition and untransposed calculations are presented, also with results on the existing power line on 110 kV voltage level and known measured values of the electrical parameters. These measured parameters are used as the reference values. A presumption is made, that through more complex calculation one can achieve better results. The real results achieved are presented and compared with an ideal presumption K e y w o r d s: overhead power lines, electrical parameters, complex depth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.