This article deals with the determination of the cyclic loading effect on the elastic modulus (Em) of beech solid and laminated wood at various thicknesses while bent in the radial direction. To identify the modulus of elasticity, a three-point static bending test was carried out. The monitored characteristics were compared for the bodies under cyclic stress vs. bodies not subject to cyclic stress. Results showed no significant effect of cyclic loading on the laminated wood elastic modulus values. Conversely, cyclic loading significantly (95% confidence interval) affects the modulus of elasticity values for solid wood. A significant impact of thickness has been observed for both types of material. The results demonstrate that the elastic modulus values decrease with increasing thickness after cyclic loading.
This study focuses on changing wood's bending properties using several types of adhesives. The strength, flexibility, and durability (service life) of laminated wood, glued with four types of adhesives, were examined. The results were compared with solid beech wood, conditioned to 9% moisture content. Depending on the adhesive used, the results indicate that laminated (layered) wood improved the strength and bending characteristics in comparison to the intact wood. Gained knowledge about materials properties have practical applications in the area of dynamic stress (e.g., as components of vibrating machinery mechanisms or in constructing beds, chairs, and sports equipment).
This paper deals with the change of roughness of compressed beech wood. Effects of temperature, pressure, and time on the results of pressing were examined. The surface roughness of beech wood in longitudinal and transversal directions was evaluated. Roughness was described by Ra. A contact method was applied. The results show that by increasing pressure, time, or temperature, the surface roughness of beech wood decreases. The highest roughness reduction occurred at the temperature of 150 °C, pressure 4 MPa, and time 20 min.
The goal of this study was to develop and test an appropriate method for the evaluation of surface quality and to identify and quantify the quality of a surface modified by 3D molding. New software was developed to evaluate the surface quality based on the identification of macroscopic defects such as cracks within a scanned area. The influence of specific factors that affect the development of cracks during the uneven pressing process was assessed. Based on the measured and evaluated results, a process combination of factors was designed which yielded an embossed surface that was formed with the lowest proportion of cracks and with sufficient shape stability. In this work, 432 groups of test pieces were monitored, with each piece exposed to different combination of factors. Based on the measured and evaluated results, we found a combination that provided the lowest crack ratio. This innovative method will contribute to the knowledge of embossed surface quality and to the improvement of the uneven pressing process for wood surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.