The development of complex embedded control systems can be improved significantly by applying formal techniques from control engineering and software engineering. It is shown how these approaches can be combined to improve the design and analysis of high-tech systems, both in theory and practice. The semantics of the integration of two established rigorous techniques has been defined formally in this work. The strength of this integrated semantics is demonstrated by means of a significant industrial case study: the embedded control of a printer paper path, whereby the full development life-cycle from model to realization is covered. The resulting model-driven design approach fits the current engineering practice in industry and is both flexible and effective.
Abstract. The well-known Sliding Window protocol caters for the reliable and efficient transmission of data over unreliable channels that can lose, reorder and duplicate messages. Despite the practical importance of the protocol and its high potential for errors, it has never been formally verified for the general setting. We try to fill this gap by giving a fully formal specification and verification of an improved version of the protocol. The protocol is specified by a timed state machine in the language of the verification system PVS. This allows a mechanical check of the proof by the interactive proof checker of PVS. Our modelling is very general and includes such important features of the protocol as sending and receiving windows of arbitrary size, bounded sequence numbers and channels that may lose, reorder and duplicate messages.
Abstract. Many companies struggle with large amounts of legacy software that is difficult to maintain and to extend. Refactoring legacy code typically requires large efforts and introduces serious risks because often crucial business assets are hidden in legacy components. We investigate the support of formal techniques for the rejuvenation of legacy embedded software, concentrating on control components. Model learning and equivalence checking are used to improve a new implementation of a legacy control component. Model learning is applied to both the old and the new implementation. The resulting models are compared using an equivalence check of a model checker. We report about our experiences with this approach at Philips. By gradually increasing the set of input stimuli, we obtained implementations of a power control service for which the learned behaviour is equivalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.