Overloaded vehicles have a significant impact on pavement fatigue life and distress. As the studies show, the phenomena intensify when the control of traffic is poor. The paper presents the results of the research including analysis of weigh in motion data from eight stations and analysis of asphalt pavement fatigue caused by mixed traffic. Distributions of vehicles axles load including the multiple axles effects are presented. Mixed axle loads were transformed into equivalent number of standard 100 kN axle loads. The regression model of load equivalency factor depending on the axle load distribution and the percentage of overloaded vehicles is presented. The analysis of the effect of overloaded vehicles on decrease of fatigue life of a pavement structure is presented. The analysis has shown that the increase of percentage of overloaded vehicles from 0% to 20% can reduce the fatigue life of asphalt pavement upto 50%.
Abstract. The paper covers the following topics important for the development of the new Polish Catalogue of typical flexible and semi-rigid pavements: reasons for preparing the new issue of the Catalogue of typical flexible and semi-rigid pavements, items introduced in the new issue, organise the terminology related to pavements, design traffic calculations and new equivalent axle load factors, new materials and technologies included in the Catalogue, classification of subgrades based on the soil material and drainage conditions, designing of lower layers and improved subgrade, designing of the main, upper layers.
This publication describes research and design works which were conducted at the Gdansk University of Technology for the purpose of development of new catalogue of typical flexible and semi-rigid pavement structures. The studies included: standardization of pavement structures terminology, study of foreign pavement structures catalogues and design methods, analysis of fatigue criteria for design of flexible and semi-rigid pavements, analysis of road traffic, based on weight in motion data, design of subgrade improvement, incorporation of new pavement materials, recycled and anthropogenic materials, determination of mechanistic parameters of materials and design of pavement structures using mechanistic-empirical methods of pavement design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.