Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 microM) and high (60 and 120 microM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 microM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.
Cadmium and copper uptake and its consequence for activity of selected enzymes of phenolic metabolism, phenolic acids accumulation, quantity of mineral nutrients and stress-related parameters in Matricaria chamomilla plants exposed to 60 μM and 120 μM for 7 days has been studied. Cu content in the above-ground biomass was ca. 10-fold lower compared to Cd and amount of Cd in the methanol-soluble fraction was lower than in the water-soluble fraction. "Intra-root" Cd represented 68% and 63% of total Cd content at 60 μM and 120 μM, but no difference was observed in Cu-exposed roots. Cu excess had more pronounced effect on shikimate dehydrogenase, cinnamyl alcohol dehydrogenase, polyphenol oxidase and ascorbate peroxidase activity mainly in the roots. Among eight detected benzoic acid derivatives and four cinnamic acid derivatives, the latter were preferentially accumulated in response to Cd excess. Content of salicylic acid increased in all variants. Amount of superoxide was elevated in both the rosettes (preferentially by Cu) and roots (preferentially by Cd). Accumulation of Ca and Mg was not affected by excess of metals, while potassium decreased in both the rosettes and roots (Cu caused stronger depletion). Amount of Fe increased in the roots in response to both metals (more expressively in Cu-treated ones). Present study using other metabolic parameters (and supplementing our previous studies) has confirmed higher Cu toxicity for chamomile plants, to support its strong pro-oxidant properties. These observations as complex metabolic responses are discussed.
The influence of salicylic acid (SA) doses of 50 and 250 microM, for a period of up to 7 days, on selected physiological aspects and the phenolic metabolism of Matricaria chamomilla plants was studied. SA exhibited both growth-promoting (50 microM) and growth-inhibiting (250 microM) properties, the latter being correlated with decrease of chlorophylls, water content and soluble proteins. In terms of phenolic metabolism, it seems that the higher SA dose has a toxic effect, based on the sharp increase in phenylalanine ammonia-lyase (PAL) activity (24 h after application), which is followed by an increase in total soluble phenolics, lignin accumulation and the majority of the 11 detected phenolic acids. Guaiacol-peroxidase activity was elevated throughout the experiment in 250 microM SA-treated plants. In turn, some responses can be explained by mechanisms associated with oxidative stress tolerance; these mitigate acute SA stress (which is indicated by an increase in malondialdehyde content). However, PAL activity decreased with prolonged exposure to SA, indicating its inhibition. Accumulation of coumarin-related compounds (umbelliferone and herniarin) was not affected by SA treatments, while (Z)- and (E)-2-beta-D: -glucopyranosyloxy-4-methoxycinnamic acids increased in the 250 microM SA-treated rosettes. Free SA content in the rosettes increased significantly only in the 250 microM SA treatment, with levels tending to decrease towards the end of the experiment and the opposite trend was observed in the roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.