Mixed (HNO3)m(H2O)n clusters generated in supersonic expansion of nitric acid vapor are investigated in two different experiments, (1) time-of-flight mass spectrometry after electron ionization and (2) Na doping and photoionization. This combination of complementary methods reveals that only clusters containing at least one acid molecule are generated, that is, the acid molecule serves as the nucleation center in the expansion. The experiments also suggest that at least four water molecules are needed for HNO3 acidic dissociation. The clusters are undoubtedly generated, as proved by electron ionization; however, they are not detected by the Na doping due to a fast charge-transfer reaction between the Na atom and HNO3. This points to limitations of the Na doping recently advocated as a general method for atmospheric aerosol detection. On the other hand, the combination of the two methods introduces a tool for detecting molecules with sizable electron affinity in clusters.
We have performed Density Functional Theory B3LYP/6-311++G** calculations of reaction enthalpies of antioxidant action mechanisms for nine isoflavones. O-H bond dissociation enthalpies, ionization potentials, proton dissociation enthalpies, proton affinities and electron transfer enthalpies related to Hydrogen Atom Transfer (HAT), Single Electron Transfer-Proton Transfer (SET-PT) and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms were investigated in gas- and solution-phases. Studies on the radical scavenging ability of isoflavones, contrary to various flavonoids, are still scarce. Thus, understanding of its thermodynamics can be considered beneficial. The selection of isoflavones (daidzein, formononetin, genistein, biochanin A, prunetin, 6-hydroxydaidzein, glycitein, orobol and santal) enables us to evaluate the effects of various structural features, such as the presence of methoxy (4'-OMe, 6-OMe, 7-OMe) and hydroxy (3'-OH, 5-OH, 6-OH) groups, on studied reaction enthalpies. The obtained results show that HAT can be attributed predominantly to the B ring, while SPLET takes place preferentially in the A ring, as was also indicated in experimental works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.