In this paper, we present data on the physics and phenomenology of plasma reactors based on the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) that are useful in optimizing the conditions for plasma formation, uniformity and surface treatment applications. It is shown that the real (as opposed to reactive) power delivered to a reactor is divided between dielectric heating of the insulating material and power delivered to the plasma available for ionization and active species production. A relationship is given for the dielectric heating power input as a function of the frequency and voltage at which the OAUGDP™ discharge is operated.
We report results from a plasma source; a diffuse coplanar surface discharge (DCSD), which is capable of generating macroscopically uniform thin layers of diffuse plasmas in air and other reactive gases at atmospheric pressure. DCSD is a type of dielectric barrier discharge generated on the surface of a dielectric barrier with embedded electrodes, which appears to be advantageous to surface treatment and deposition processes. Preliminary results on hydrophilization of polypropylene nonwoven fabric are also presented.
A new plasma source, the so-called diffuse coplanar surface barrier discharge (DCSBD), is described. DCSBD allows a visually diffuse high-density 'cold' plasma to be sustained in atmospheric-pressure air at a high plasma power density exceeding 100 W cm −3 that permits high-speed surface processing of large-area webs and flat surfaces. This is demonstrated by the results on a successful in-line activation of thin polypropylene fabric at 450 m min −1 and plasma exposures as short as 0.14 s. DCSBD basic features resulting in the observed high efficiency of plasma activation and the related plasmachemical mechanism are discussed briefly.
A transparent plasma discharge reactor using air was used to investigate the transition from a filamentary dielectric barrier discharge (FDBD) operation regime into the diffuse barrier discharge regime. Recent results of other researchers indicate that the stability of diffuse barrier discharges in nitrogen may be attributed to the lack of a fully formed cathode fall layer when the discharge operates in a regime between the Townsend discharge and a normal glow discharge. We have demonstrated that a diffuse barrier discharge in air exhibits an increased accumulation of electric charge on the electrode's dielectric plates as compared with the FDBD. This may provide a means of stabilizing the discharge in a Townsend-to-glow discharge transition. Unlike operation in nitrogen, a streamer mechanism is involved in the formation of a uniform air plasma, though in a different manner than is associated with the FDBD. Numerous diffuse streamer clusters were observed on pre-charged dielectric plates at the breakdown voltage. Our conclusion is that the macroscopically uniform atmospheric-pressure DBD in air is obtained by the numerous radially expanding streamers that are temporally overlapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.