This article deals with the vibrations of a nonprismatic thin-walled beam with an open cross section and any geometrical parameters. The thin-walled beam model presented in this article was described using the membrane shell theory, whilst the equations were derived based on the Vlasov theory assumptions. The model is a generalisation of the model presented by Wilde (1968) in ‘The torsion of thin-walled bars with variable cross-section’, Archives of Mechanics, 4, 20, pp. 431–443. The Hamilton principle was used to derive equations describing the vibrations of the beam. The equations were derived relative to an arbitrary rectilinear reference axis, taking into account the curving of the beam axis and the axis formed by the shear centres of the beam cross sections. In most works known to the present authors, the equations describing the nonprismatic thin-walled beam vibration problem do not take into account the effects stemming from the curving (the inclination of the walls of the thin-walledcross section towards to the beam axis) of the analysed systems. The recurrence algorithm described in Lewanowicz’s work (1976) ‘Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series’, Applicationes Mathematicae, XV(3), pp. 345–396, was used to solve the derived equations with variable coefficients. The obtained solutions of the equations have the form of series relative to Legendre polynomials. A numerical example dealing with the free vibrations of the beam was solved to verify the model and the effectiveness of the presented solution method. The results were compared with the results yielded by finite elements method (FEM).
ANALIZA DRGAŃ SWOBODNYCH NIEPRYZMATYCZNEGO PRĘTA CIENKOŚCIENNEGOPrzedmiotem rozważań w niniejszej pracy jest zagadnienie własne niepryzmatycznego pręta cienkościennego opisanego według teorii Własowa. Przestrzenne drgania pręta opisane są czterema, w ogólnym przypadku sprężonymi, równaniami o zmiennych współczynnikach. Równania te zostały rozwiązane z wykorzystaniem szeregów Czebyszewa. Zastosowana metoda bazuje na twierdzeniu dotyczącym rozwiązywania równań różniczkowych zwyczajnych, przedstawionym w monografii Paszkowskiego, Zastosowanie numeryczne wielomianów i szeregów Czebyszewa, PWN, Warszawa, 1975. Uzyskane w wyniku zastosowania opisanego twierdzenia związki rekurencyjne pozwalają na wyznaczenie współczynników rozwinięć, w szeregi Czebyszewa, poszukiwanych funkcji przemieszczeń i obrotu. W przypadku drgań swobodnych związki te mają postać nieskończonego układu równań algebraicznych. Przedstawione rozważania dotyczą układu o dowolnie zmiennych parametrach geometrycznych i materiałowych. Uzyskane końcowe wzory pozwalają na rozwiązanie zagadnienia własnego dowolnego pręta. Wystarczy tylko w nieskończonym układzie równań podstawić współczynniki rozwinięć parametrów aktualnie analizowanego układu. W celu weryfikacji uzyskanych wyników porównano otrzymane częstości i formy własne z wynikami otrzymanymi z wykorzystaniem MES. Do analizy MES wykorzystano program komputerowy Sofistik. Układ podzielono na 100 pryzmatycznych belkowych elementów skoń-czonych o siedmiu stopniach swobody. Otrzymane rezultaty w zakresie częstości własnych dały dobrą zgodność wyników otrzymanych z wykorzystaniem przedstawionej w pracy metody, a wynikami uzyskanymi z wykorzystaniem MES. Gorszą zgodność otrzymano w zakresie form własnych, niewątpliwy wpływ na to miał istotnie różny sposób modelowania analizowanych układów.Słowa kluczowe: teoria Własowa, częstości i formy własne, szeregi Czebyszewa, związki rekurencyjne, rozwiązania analityczne
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.