We introduce a novel approach to Query-byExample (QbE) retrieval, utilizing fundamental principles of posteriorgram-based Spoken Term Detection (STD), in this paper. Proposed approach is a kind of modification of widely used segmental variant of dynamic programming algorithm. Our solution represents sequential variant of DTW algorithm, employing one step forward moving strategy. Each DTW search is carried out sequentially, block by block, where each block represents squared input distance matrix, with size equal to the length of retrieved query. We also examine a way how to speed up sequential DTW algorithm without considerable loss in retrieving performance, by implementing linear time-aligned accumulated distance. The increase of detection accuracy is ensured by weighted cumulative distance score parameter. Therefore, we called this approach Weighted Fast Sequential -DTW (WFS-DTW) algorithm. A novel PCA-based silence discriminator is used along with this algorithm. Evaluation of proposed algorithm is carried out on ParDat1 corpus, using Term Weighted Value (TWV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.