The use of modern data mining techniques on large datasets has become a recent phenomenon across a broad range of applications. One of the most frequent tasks is to build statistical models using historical data and utilize them to predict new, so far unclassified, cases. This article examines the problem of predicting a military interstate dispute between two states (dyad) by employing selected data mining techniques. Suitable methods are identified and applied to the existing dataset of politically relevant dyads. The result is the building of statistical models for the classification of potential dyadic conflicts. The overall performance of these models is verified and cost analysis is done based on the different impacts of incorrect classification. The results are compared with those of other published research studies in the field of conflict prediction; the models created by data mining techniques significantly outperform all rival algorithms and approaches. Finally, the last part of the article presents the results of applying data mining techniques to association, i.e. to discovering relationships and dependencies in the data.
Výzkum využívání strukturovaných analytických technik ukázal, že zpravodajští analytici při používání strukturovaných technik dosahují lepších výsledků v analýze než použitím intuitivních přístupů. Experiment byl založen na řešení analytických úkolů dvou scénářů. K ověření nulové hypotézy byl proveden test chí-kvadrát nezávislosti. Počet správných odpovědí byl nejvyšší v experimentální skupině při řešení úkolů kritéria zpravodajské analýzy scénářů. Zlepšená analýza experimentální skupiny v řešení druhého scénáře byla statisticky významná. Nulová hypotéza, využívání strukturované metodologie zlepšuje kvalitativní zpravodajskou analýzu, se nezamítá. Výsledky výzkumu ukázaly, že úspěšnost řešení úlohy je ovlivněna správným použitím strukturované techniky. Využívání technik závisí na úrovni jejich znalostí. Provedení výzkumu zároveň prokázalo vliv kognitivních zkreslení analytiků.
Structured analysis is a systematic approach to solving intelligence analytic problems. Methodology and analytical techniques in the intelligence analysis include the selection of structured techniques from the point of view of the analytical task and the use of the analytical spectrum. Basic structured analytical techniques ensure transparency and reduce personality bias. Taxonomy is the basis for quality analysis. There are 55 types of techniques that complement expert judgment and intuition. A properly structured analysis contains twelve questions supplemented by a number of analytical techniques. The method of analytical spectrum in strategy leads to the split of the process into the phase of analysis, synthesis, selection of information and argumentation, and the analysis itself consists of four sub-stages. The basic parameters that negatively affect the use of structured analytical techniques by intelligence analysts are the analytical and collective approach, the patterns and the level of education.
The article deals with the issue of the cognitive pyramid and the possible use of intelligence analysis in the context of gaining the understanding and wisdom of users of information using this pyramid. The cognitive pyramid is used to define the terms date, information, knowledge, understanding and wisdom that make up the various levels of the pyramid. The paper attempts to discuss concepts in different models of the pyramid. It briefly describes intelligence in the context of the use of intelligence by means of a cognitive pyramid. Intelligence is a special kind of knowledge. This article also seeks to explore how intelligence creation can be explained using a cognitive analytical pyramid model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.