This article deals with the adjustment of a 3D printer for laser engraving and material cutting. The print head can be fitted with a solid laser diode module, which achieves a compact size while retaining its useful power. Two paths lead to the use of such a concept. It is possible to equip the existing print head with a module, which also brings a number of disadvantages such as, for example, the reduction of the printing space or the need for a suitable mounting design. A more elegant solution is to consider this in the design of a 3D printer and design a system to exchange the print heads for 3D printing and laser engraving. Such a solution allows full utilization of the workspace and simple installation of the effector for the required type of work. According to the installed power of the laser diode, it is possible not only to engrave but also cut material such as thin wood, veneer or acrylic glass. The use of such a machine is not only for graphic elements but for the creation of various stencils, boxes or simple models, which can be made up of plastic-burning pieces. The laser module is controlled by a driver, which is designed for the device. This is connected to a 3D printer control board. It is, therefore, necessary for the control board to have at least two pins, which can be controlled after adjusting the control firmware. Most laser modules are normally equipped with an adjustable lens, which is used to concentrate the focus of a laser for the given distance against the worktop. Thus, the modified 3D printer can perform its function as a multi-purpose CNC machine, while a basic platform similar for both devices is used.
Abstract:Increase in the number of orders, the increasing quality requirements and the speed of order preparation require implementation of new solutions and improvement of logistics processes. Any disruption that occurs during execution of an order often leads to customer dissatisfaction, as well as loss of his/her confidence. The article presents a case study of the use of quality engineering methods and tools to improve the e-commerce logistic process. This made it possible to identify and prioritize key issues, identify their causes, and formulate improvement and prevention measures.
This article deals with studying the relationships among the chemical composition, microstructure and properties (hardness, micro-hardness, wear resistance) of powder additives based on NiCrBSi after their deposition. Tested materials reached a relatively wide range of hardness after deposition, which corresponds to their chemical composition and microstructure. The abrasive wear resistance of materials was tested on an emery cloth. The results indicate that both the hardness and abrasive wear resistance of tested materials depend especially on the content of carbon and chromium. Microstructural analysis indicates that the structure of tested materials is formed by the γ-Ni solid solution and intermediate phases based on boron, silicon and carbon. Those mostly form eutectics (three types), or are excluded by precipitation. There was also found a significant effect of chromium, but especially carbon content on the ratio between the solid solution and eutectics in the microstructure of tested materials. These different ratios of solid solution and eutectics were markedly reflected in micro-hardness behaviours in deposited layers. Micro-hardness values confirmed also the presence of carbidic particles in the layers with carbon content higher than 0.7 wt%.
This contribution focuses on solving a customer complaint accepted by an organization for manufacturing of automobile seats. The occurrence of nonconformity and causes of undetected nonconformity in the manufacturing process of automobile seats is solved by seven new quality management tools. Causes, effects, activities leading to elimination of the problem, remedies and precautions for possible problems within solution implementation, and time schedule with individual reserves are defined. Results lead to solving the issue both on the part of supplier and on the part of the organization for manufacturing of automobile seats
The paper describes the mechanical qualities of thermoset – epoxy resin filled with recycled rubber in the form of micro-particles. Such an application of waste can be regarded as material usage which should be preferred to other ways of waste handling. Micro-particles of recycled rubber affect the mechanical qualities of polymer in which they are dispersed. The paper quantifies cohesive and adhesive properties of the filled epoxy resin. Filling polymers – thermosets with waste fillers saves costs, it does not burden the environment, and it is inexpensive. The results described in this paper can lead to enlarging the application areas of recycled rubbers. As the filler, recycled rubber gained by the process of an ecological disposal of tyres by Gumoeko, s.r.o. (private limited company) was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.