Summary. A class of methods of direct type for solving determined or underdetermined, full rank or deficient rank linear systems is presented and theoretically analyzed. The class can be considered as a generalization of the methods of Brent and Brown as restricted to linear systems and implicitly contains orthogonal, L U and LL T factorization methods.
Summary. In this paper we consider an extension to nonlinear algebraic systems of the class of algorithms recently proposed by Abaffy, Broyden and Spedicato for general linear systems. We analyze the convergence properties, showing that under the usual assumptions on the function and some mild assumptions on the free parameters available in the class, the algorithm is locally convergent and has a superlinear rate of convergence (per major iteration, which is computationally comparable to a single Newton's step). Some particular algorithms satisfying the conditions on the free parameters are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.