It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking.
The first complete infrared FTIR absorption spectra for carbonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. All previous attempts failed to measure the absorption of carbonado-diamond in the most important IR-range of 1000-1300 cm -1 (10.00-7.69 µm) because of silica inclusions. In our investigation, KBr pellets were made from crushed silica-free carbonado-diamond and thin sections were also prepared. The 100 to 1000 times brighter synchrotron infrared radiation permits a greater spatial resolution.Inclusions and pore spaces were avoided and/or sources of chemical contamination were removed. The FTIR spectra of carbonado-diamond mostly depict the presence of single nitrogen impurities, and hydrogen. The lack of identifiable nitrogen aggregates in the infrared spectra, the presence of features related to hydrocarbon stretch bonds, and the resemblance of the spectra to CVD and presolar diamonds indicate that carbonado-diamonds formed in a hydrogen-rich interstellar environment. This is consistent with carbonado-diamond being sintered and porous, with extremely reduced metals, metal alloys, carbides and nitrides, light carbon isotopes, surfaces with glassy melt-like patinas, deformation lamellae, and a complete absence of primary, terrestrial mineral inclusions. The 2.6 -3.8 billion year old fragmented body was of asteroidal proportions.
Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.