The key enzyme in methane metabolism is methane monooxygenase (MMO), which catalyses the oxidation of methane to methanol. Some methanotrophs, including Methylococcus capsulatus (Bath), possess two distinct MMOs. The level of copper in the environment regulates the biosynthesis of the MMO enzymes in these methanotrophs. Under low-copper conditions, soluble MMO (sMMO) is expressed and regulation takes place at the level of transcription. The structural genes of sMMO were previously identified as mmoXYBZ, mmoD and mmoC. Putative transcriptional start sites, containing a s 70 -and a s N -dependent motif, were identified in the 59 region of mmoX. The promoter region of mmoX was mapped using truncated 59 end regions fused to a promoterless green fluorescent protein gene. A 9?5 kb region, adjacent to the sMMO structural gene cluster, was analysed. Downstream (39) from the last gene of the operon, mmoC, four ORFs were found, mmoG, mmoQ, mmoS and mmoR. mmoG shows significant identity to the large subunit of the bacterial chaperonin gene, groEL. In the opposite orientation, two genes, mmoQ and mmoS, showed significant identity to two-component sensor-regulator system genes. Next to mmoS, a gene encoding a putative s N -dependent transcriptional activator, mmoR was identified. The mmoG and mmoR genes were mutated by marker-exchange mutagenesis and the effects of these mutations on the expression of sMMO was investigated. sMMO transcription was impaired in both mutants. These results indicate that mmoG and mmoR are essential for the expression of sMMO in Mc. capsulatus (Bath).
The emergence of the multi-drug-resistant Staphylococcus aureus strains has prompted interest in alternatives to conventional drugs. Among the possible options one of the most promising is the therapeutic use of bacteriophages. Over the recent decades, increasing amount of literature has validated the use of bacteriophages for therapy and prophylaxis against drug-resistant staphylococci. This work attempts to review the current knowledge on bacteriophages and their usages for treatment of staphylococcal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.