Fruit crops have a growing economic importance worldwide and molecular genetics might be useful in solving many problems that arise during commercial production. One of the fields that have attracted intense attention is the molecular basis of self-incompatibility that may result in low fruit set. In tree fruits of the Rosaceae family, the incompatibility reactions take place between the pistil S-ribonuclease (S-RNase) and the pollen-expressed S-haplotype specific F-box (SFB) proteins. In most cases, the loss of self-incompatibility was associated with mutations in the S-RNase or SFB genes. A total of 27 non-functional S-haplotypes have been identified and characterized, most (24) of which emerged as a consequence of natural mutations. In the Prunoideae, most haplotypes are pollen-part mutants (50 %), while 8 are stylar-part mutants (36 %), one haplotype shows both pollen-and stylar-part mutations, and molecular changes for two haplotypes still have not been clarified. In contrast, non-functional natural haplotypes in the Maloideae are all stylar-part mutants. The analysis of such mutants may shed light on underlying molecular mechanisms as was the case with the establishment of the general inhibitor model that describes interactions between pollen and pistil S-proteins. However, several other molecules were supposed to contribute to the molecular interactions, at least in Solanaceae, a family with a similar self-incompatibility system. This review also endeavours to delineate the evolutionary implications of the S-locus mutations and collect limited data on non-S-locus molecular interactions and signaling events after self-and cross-pollination of fruit tree species.
Fenhexamid is a widely used fungicide with one of the highest maximum tolerance limits approved for fruits and vegetables. The goal of this study was to examine if fenhexamid is metabolized by a nontarget organism, a Lactobacillus species (Lactobacillus casei Shirota), a probiotic strain of the human gastrointestinal tract. The assignment of bacterial derivatives of the xenobiotic fenhexamid was substantially facilitated by a metabolomic software based approach optimized for the extraction of molecular features of chlorine-containing compounds from liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry data with an untargeted compound search algorithm. After validating the software with a set of seventeen chlorinated pesticides and manually verifying the result lists, eleven molecular features out of 4363 turned out to be bacterial derivatives of fenhexamid, revealing the O-glycosyl derivative as the most abundant one that arose from the fermentation medium of Lactobacillus casei Shirota in the presence of 100 μg/mL fenhexamid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.