Identifying the performance factors of organizations is of utmost importance for labor studies for both empirical and theoretical research. The present study investigates the essential intra- and extra-organizational factors in determining the performance of firms using the European Company Survey (ECS) 2019 framework. The evolutionary computation method of genetic algorithm and the machine learning method of Bayesian additive regression trees (BART), are used to model the importance of each of the intra- and extra-organizational factors in identifying the firms’ performance as well as employee well-being. The standard metrics are further used to evaluate the accuracy of the proposed method. The mean value of the evaluation metrics for the accuracy of the impact of intra- and extra-organizational factors on firm performance are MAE = 0.225, MSE = 0.065, RMSE = 0.2525, and R2 = 0.9125, and the value of these metrics for the accuracy of the impact of intra- and extra-organizational factors on employee well-being are MAE = 0.18, MSE = 0.0525, RMSE = 0.2275, and R2 = 0.88. The low values of MAE, MSE and RMSE, and the high value of R2, indicate the high level of accuracy of the proposed method. The results revealed that the two variables of work organization and innovation are essential in improving firm performance well-being, and that the variables of collaboration and outsourcing, as well as job complexity and autonomy, have the greatest role in improving firm performance.
Given the importance of identifying key performance points in organizations, this research intends to determine the most critical intra- and extra-organizational elements in assessing the performance of firms using the European Company Survey (ECS) 2019 framework. The ECS 2019 survey data were used to train an artificial neural network optimized using an imperialist competitive algorithm (ANN-ICA) to forecast business performance and employee wellbeing. In order to assess the correctness of the model, root mean square error (RMSE(, mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (r), and determination coefficient (R2) have been employed. The mean values of the performance criteria for the impact of internal and external factors on firm performance were 1.06, 0.002, 0.041, 0.9, and 0.83, and the value of the performance metrics for the impact of internal and external factors on employee wellbeing were 0.84, 0.0019, 0.0319, 0.83, and 0.71 (respectively, for MAPE, MSE, RMSE, r, and R2). The great performance of the ANN-ICA model is indicated by low values of MAPE, MSE, and RMSE, as well as high values of r and R2. The outcomes showed that “skills requirements and skill matching” and “employee voice” are the two factors that matter most in enhancing firm performance and wellbeing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.