Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary), who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (“attentional myopia”) and promotes a bias toward hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e., before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness.
Background: The purpose of our study was to compare the physiological effects of extreme physical and psychological stress tests in male soccer players, since these two types of stress apply to athletes with high performance requirements. Methods: A total of 63 healthy male soccer players participated in this study, all of whom underwent both of the tests. A physical stress test was carried out in an exercise physiology laboratory, where subjects completed an incremental treadmill running test to full exhaustion, and a psychological test was performed in a military tactical room, where subjects met a street offence situation. Heart rate variability (HRV) and blood pressure (BP) were recorded directly before, immediately after, and 30 min after the stress tests. Results: The majority of HRV indices changed significantly in both stress protocols. Inverse, significant changes (positive for the physical test, negative for the psychological test, p < 0.001) were found when comparing the alterations of HRV indices between the tests. Significant differences were found in the changes in systolic (p = 0.003) and diastolic (p < 0.001) BP between the test protocols, and also between the baseline and post-test measurements (p < 0.001). Conclusion: Both HRV and BP are sensitive physiological parameters to measure the impact of extreme physical and/or psychological stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.