In a distributed cooperative communication system, as the distances between different relay nodes and the receiving nodes may be different, so the performances of distributed space time codes at receiving nodes may badly be degraded if timing synchronization is not assured. In this article, extending the work of Damen et al. we introduce the design of distributed threaded algebraic space-time (TAST) codes offering resistance to timing delay off-set. We present some new and useful techniques of constructing delay tolerant TAST code for distributed cooperative networks, which, like their brethren codes, are delay tolerant for any delay profile and achieve full diversity for arbitrary number of relays, transmit/receive antennas, and input alphabet size. Our proposed codes with minimum lengths achieve better performances than the existing codes retaining full rate and full diversity with or without use of guard bands. Simulations results confirm our claim of obtaining better performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.